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Abstract

This paper considers a dynamic pricing problem encountered during the clearance-markdown
period of a retail product. Much of the literature assumes knowledge of reservation prices to
solve such a problem. However, practicing retailers are more comfortable with the notion of
consumers’ demand-response functions than with reservation prices. Hence we introduce
two models that incorporate such functions into the framework of dynamic pricing. In
particular, we study in detail the Cobb-Douglas function, but our models are sufficiently
general to capture the effects of any other demand-response function. Our first model is
a risk-neutral model designed to maximize the expected value of the total revenues earned
over a finite time horizon. Our second model is a risk-sensitive model designed to maximize
the expected revenues subject to a constraint on the maximum allowable variance in the
revenues. To the best of our knowledge, this is the first attempt at risk-sensitive pricing of
retailer goods in the clearance-markdown period. Finally, we show with the help of data
collected from a major grocery chain in the northeastern USA how our models may be used
in practice.

1. Introduction

Seasonality of demand, product perishability, an increasing competition among retailers,
and shortening product life cycles have made sales induced by markdowns for clearance
a widely-prevalent and necessary practice in the US retail industry. In fact, according to
the National Retail Federation, marked-down goods, which accounted for just 8% of retail
sales three decades ago, have now increased to around 20% [32]. In spite of their increasing
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use, “retailers hate markdowns” [32] because of the difficulties in determining the discounts
and the often-adverse consequences of sub-optimal markdowns. If the prices are not cut
deep enough, then they may be stuck with truckloads of “worthless” inventory. On the
other hand, if the price discounts are too deep, then they may lose profits to customers
who would have otherwise paid higher prices. The challenges and pitfalls of markdown-
pricing strategies are quite apparent every year with scores of retailers, including Gap
and Neiman Marcus, often attributing their poor financial performances to sub-optimal
markdown-pricing strategies [32]. Figure 1 shows the different elements of the time horizon
over which sales occur.

Figure 1: Time horizon of interest to us.

Despite the critical import of successful markdown pricing, in practice, retailers depend
mostly on rules of thumb, gut-feelings, or what the competition is doing, rather than on
any scientific decision processes [32, 45]. This is changing in recent years as a handful of
retailers like J.C. Penny and L.L. Bean have adopted more scientific approaches. They have
started “experimenting with sophisticated new software programs to test principles similar
to yield management, which airlines mastered years ago to eke out the maximum profit from
every seat” [32, 44]. Prior related research in the area of revenue management and dynamic
pricing can be categorized into work done in economics, marketing, consumer psychology
and operations research. Economists typically seek to understand how markets work [4,
7, 18]; a target industry is chosen and appropriate assumptions are made of the market
structure (competition, oligopoly, etc) to generate defining mathematical expressions, based
on proven demand-supply tenets. Empirical data collected on the number and types of
market participants and elasticities of demand/supply are employed in the mathematical
expressions. When the equilibrium market-conditions are identified, the behavior of one or
more suppliers (firms) within the market is analyzed. Pashigan [35] was one of the first
works to study consumer behavior in the context of price variations. Bagwell et al. [4]
set up a game-theory-based competitive market equilibrium for retail goods, conducting a
mathematical analysis on directions that prices and investment decisions take. An analysis
of the gasoline markets by Borenstein and Shepard [7] reveals higher collusion between
market players to be an important causative agent for increased price margins and dynamic
pricing trends. The paper by Courty and Li [11] reveals the importance of understanding
changing customer information and behavior to increase firm profit.
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The literature on marketing and consumer psychology, notably the works by Kalyanara-
man and Winer [23] and Briesch et al. [8], provides compelling evidence for the dependence
of demand on past (reference) prices. The research is often empirical, although in many
cases [24, 23, 26] theoretical generalizations are also derived. Other examples of similar
work are [27, 19]. Exercises of this nature are aimed at understanding consumer behavior
and dynamics, and have focussed on using such understanding to develop optimal mark-
down pricing strategy for firms. Adaptation-level theory [22] has been used to analyze the
customers’ response to the current price of a product, and prospect theory [12] has been
employed to understand how individual consumers perceive current prices as gains or losses
relative to a reference price, resulting in a “loss-aversion” asymmetry. These results have
been validated empirically as being consistent with how consumers actually behave in Putler
[38] and Kalyanaraman and Winer [23].

The body of literature on inventory-order optimization and joint ordering-and-production
pricing is quite significant (see [13]) for a survey), but our focus on clearance markdown
pricing renders this beyond the scope of this work. A nice review of the viewpoints of
optimization theorists can be found in the works by Elmaghraby and Keskinocak [14] and
by Bitran and Caldentey [5]. Gallego and van Ryzin [17] and Bitran and Mondschein [6]
are seminal works that introduced the ideas of stochastic customer arrival patterns and
reservation prices, jump-starting a whole new branch of research involving these concepts.
They describe basic dynamic-programming models that yield optimal prices for one prod-
uct. Probability functions are assumed for consumer arrival rates and reservation prices.
Gallego and van Ryzin [17] obtain some insightful structural results relating price to stock
levels and the length of the horizon, and also present an excellent analysis of some good
heuristics.

Several improvements to these were introduced later, through models of varying com-
plexity, that strove to closely replicate different real-life situations, such as multiple product
scenarios (see [25, 9, 30]). A Markov decision process in a heuristic [3] and deterministic
[20] sense has also been used to solve the pricing problem. Xu and Hopp [52] show that dy-
namic pricing coordinated with demand forecasting and inventory decisions achieves higher
profits than static pricing. Lin [29] shows how real-time learning enables fine-tuning of
customer arrival-rates and the precise forecasting of future demand to maximize the total
revenue. Other works that detail dynamic pricing based on customer preferences and re-
sponses (with or without demand learning) include those by Chod and Rudi [10] and Van
Miegham and Data [48]. A few have modeled consumer arrivals as diffusion processes using
Brownian motion: Raman and Chatterjee [39], Sapra and Jackson [42] and Xu and Hopp
[52]. Multi-supplier formulations using game-theory represent extensions but are complex
to model.

Popescu and Wu [37] combine marketing and behavioral theory approaches to solve the
dynamic pricing problem of a monopolistic supplier, whose consumers are sensitive to its
pricing history. The work by Anjos, Chung and Currie [2] presents families of continuous
functions that enable explicit characterization and easy implementation of optimal pricing
strategies. An earlier work on risk-sensitive pricing was the one by Feng and Xiao [16]
where they presented a risk-sensitive pricing model to maximize sales revenue for perishable
commodities with fixed capacity.
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In the light of this literature review, our contributions are mainly twofold: (i) we present
a generic dynamic programming model for risk-neutral pricing that can incorporate compli-
cated demand-response functions instead of reservation prices and (ii) we present a dynamic
optimization model, based on Lagrangean relaxation, for risk-sensitive pricing. Both models
take a modest amount of computational time. Practicing retailers are comfortable with the
use of demand-response functions, especially in the clearance-markdown period, and hence
our framework is amenable for direct use with real-world data to develop clearance-pricing
strategies. In particular, it is not necessary to compute the distributions of the reservation
prices or those of the demand-arrival patterns. Also, our second model is developed for a
risk-averse retailer. Such a model is psychologically more reassuring to practitioners, who
are usually risk-sensitive. We conclude this paper by showing how the methods developed
here can be used with real-world data collected from a local grocery chain.

The rest of this article is organized as follows. Section 2 presents a dynamic program-
ming model that is risk-neutral, while Section 3 presents a model that is risk-sensitive.
Computational results with our models are described in Section 4. Section 5 concludes this
paper.

2. A risk-neutral approach

The price elasticity of demand, as noted above, is a well-studied parameter in the literature
on economics. Let S denote the total demand for a product and q the price for that product.
The relationship between S and q that we have used in our computations is given by the
generic function g(.), such that S = g(q), where g(.) depends on various factors such as
time of the season and the gender and the income level of the buyers [36, 46]. One example
of g(.) is the Cobb-Douglas function (standard literature in Microeconomics [36, 49, 50]),
which is used to model a downward-sloping convex function with two substitutable entities.
The function contains a constant elasticity parameter η. We will describe this function in
more detail below; we first present a DP model that can incorporate such demand-response
functions within itself.

We begin with some notation. Q will denote the discrete and finite ordered set of prices
allowed, whose cardinality will be denoted by R, and q(r) will denote the rth element of
the set Q. K will denote the number of periods. Typically, the duration of a period is one
day, but it could also be a week or a fortnight. Let C represent the starting inventory for
the product. The period will be indexed by k. The demand realized (or goods sold) in the
kth period, when the price of the product equals the rth element of the ordered set Q, will
be denoted by Sr

k. This quantity is a random variable. Since the DP formulation will be
backward, we will begin computing from k = K. Let Vk(i) denote the value function of DP
in the beginning of the kth period if the inventory to be sold is i. The algorithm will work
as follows:

Step 1: Set k = K. Set VK+1(i) = 0 for i = 0, 1, 2 . . . , C.
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Step 2: If k = 1, perform the computation in (1) for i = C. Otherwise, do the same for
i = 0, 1, 2, . . . , C.

Vk(i) ← max
r=1,2,...,R




i∑

j=0

P[Sr
k = i− j] {(i− j)q(r) + Vk+1(j)}


 . (1)

Step 3: Decrement k by 1. If k > 0, return to Step 2; otherwise go to Step 4.

Step 4: Determine the optimal price, r∗k(i), for the kth period when the inventory is i as
follows. For k = 2, 3, . . . ,K and i = 0, 1, 2, . . . , C,

p∗k(i) = q


arg max

r=1,2,...,R




i∑

j=0

P[Sr
k = i− j]{(i− j)q(r) + Vk+1(j)}





 .

And for the first period:

p∗1(C) = q


arg max

r=1,2,...,R




C∑

j=0

P[Sr
k = C − j]{(C − j)q(r) + V2(j)}





 .

From the distribution of the demand and the nature of the function used, we can de-
termine the transition probabilities defined above and thereby perform the computations
required in the DP steps outlined above. We carried out a number of successful tests with
the Cobb-Douglas function that we will describe in Section 4. A version of the Cobb-Douglas
function is often defined as follows:

Sr
k = Zr,k(q(r))−η, (2)

where Z is a random variable, whose distribution can be estimated from existing market
data, that depends on the price q(r) and k the time period. See Figure 2 for a graphical
representation of the Cobb-Douglas function.

Figure 2: The influence of Z and η on the demand
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3. A risk-sensitive approach

For a risk-sensitive formulation of pricing strategies, the DP model cannot be used easily,
and one must resort to a more fundamental model based on mathematical programming.

Let µr,k ≡ E[Zr,k] and σ2
r,k ≡ V[Zr,k], where E and V denote the expectation and variance

operators respectively. Further let Xr,k denote a binary variable that assumes a value of
1 when price q(r) is selected in period k and is 0 otherwise. If W k

r denotes the revenue
in the kth time period when the rth price is selected, then clearly W k

r = Sk
r q(r). Using

the definition of the Cobb-Douglas function in (2), we have that E[W k
r ] = E[(q(r))1−ηZk

r ] =
(q(r))1−ηE[Zr,k] = (q(r))1−ηµr,k.

The risk-neutral model can then be set up as the following mathematical program:

Maximize
R∑

r=1

K∑

k=1

E[W k
r ]Xr,k ≡

R∑

r=1

K∑

k=1

(q(r))1−ηµr,kXr,k such that (3)

R∑

r=1

K∑

k=1

(q(r))−η max(Zr,k)Xr,k ≤ C and (4)

Xr,k ∈ {0, 1} for all r = 1, 2, . . . , R, and k = 1, 2, . . . , K.

The decision variables are Xr,k for r = 1, 2, . . . , R and k = 1, 2, . . . , K. The constraint in
(4) ensures that the maximum demand generated by the pricing strategy does not exceed
the total inventory in the system. If σ2

r,k ≡ V[Zr,k], then the variance of the revenues over
the entire time horizon would be:

R∑

r=1

K∑

k=1

V[W k
r ]Xr,k =

R∑

r=1

K∑

k=1

V[(q(r))1−ηZr,k]Xr,k =
R∑

r=1

K∑

k=1

(q(r))2−2ησ2
r,kXr,k.

Risk is an important element in the decision-making of managers in a variety of fields (see
[40] for a survey). We use variance to measure risk in this paper. Variance was introduced
as a measure of risk in the seminal work of Markowitz [31]. While variance exhibits a
number of disadvantages with respect to measuring risk [31, 1], it is quite popular in the
literature [16, 41]. The risk-sensitive pricing optimization problem (P) can then be set up
as the above mathematical program subject to an additional risk constraint, which is as
follows:

R∑

r=1

K∑

k=1

(q(r))2−2ησ2
r,kXr,k ≤ B, (5)

where B is the ceiling on the risk, which is determined by managerial policy.
Our pricing problem (P), with (3) as the objective function and (4) and (5) as con-

straints, is a constrained longest path problem. Figure 3 shows a simple network for R = 3
and K = 3; the weights along each path are the revenues. To be more specific, one of the
constraints, (4), is a knapsack constraint, whereas the other constraint, (5), is a non-linear
variance constraint. There are a few pieces of work that we draw upon to develop an exact
solution method for (P). Handler and Zang [21] developed an exact procedure for the con-
strained shortest path problem when just a knapsack constraint is present. Sivakumar and
Batta [43] built upon the work in [21] to develop an exact procedure for the constrained
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Figure 3: A directed graph for a small pricing problem in which K = 3 and Q = {2, 3, 5}.
Each node is defined by (q(r), k) for r = 1, 2, 3 and k = 1, 2, 3.

shortest path problem when just a non-linear variance constraint is present. The works in
both Handler and Zang [21] and Sivakumar and Batta [43] rely upon the ability to find the
kth shortest path on a network, cf, [53]. Indeed, the shortest path problem is one of the
very few optimization problems for which it is possible to find not just the best, but also
the second best, third best, . . ., solutions. This fact is exploited in [21, 43] to find an exact
solution to their respective problems. A final piece of work that we draw upon is Naor and
Brutlag [33], who present an algorithm to determine the kth longest path in a network.

Our procedure is essentially an amalgamation of the methods in [21, 43, 33]. The basic
idea here is to solve the “routing problem” in two stages. The first stage involves Lagrangean
dualization of the problem, yielding lower and upper bounds for the primal. In cases where
the dual solution is not equal to the primal (i.e., the optimal Lagrangean multipliers are
non-zero), the problem is taken to a second duality-gap-closure stage. A solution technique
to the kth-longest-path problem (or shortest path in case of minimization [53, 28, 15]) is
then employed for closing the duality gap to obtain an exact solution.

Following [43], we first solve for a Lagrangean dual with 2 penalty parameters. The
Lagrangean relaxation of the original integer program becomes:

L(λ1, λ2) ≡
R∑

r=1

K∑

k=1

(q(r))1−ηµr,kXr,k

+λ1

[
C −

R∑

r=1

K∑

k=1

(q(r))−ηµr,kXr,k

]
+ λ2

[
B −

R∑

r=1

K∑

k=1

(q(r))2−2ησ2
r,kXr,k

]

where λ1, λ2 ≥ 0. As is well-known [51], any solution of this Lagrangean relaxation will serve
as an upper bound on the original problem, and the goal is to identify the best (lowest) upper
bound. For this, one must solve the Lagrangean dual, i.e., minimize L(λ1, λ2) such that
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Figure 4: Flow chart for the Lagrangean Relaxation Technique
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λ1, λ2 ≥ 0. This is followed by the gap-closing procedure that involves iterative examination
of whether the kth longest path, (k+1)st longest path, . . . in a directed, acyclic network are
optimal to the primal. The procedure is summarized in the flowchart shown in in Figure 4.

The validity of the exactness claim of [21], as formalized in [43], is briefly described
here. The kth- best solution to the Lagrangean dual (with the optimal multipliers) is the
best solution to the Lagrangean dual (using the same multipliers) of the restricted primal
problem that excludes all primal solutions which occur among the 1st, 2nd . . . kth- best
solutions of the original Lagrangean dual. Furthermore, the upper bound generated in the
first (Lagrangean dualization) stage is the value of the best primal feasible solution found
so far. The progressive upper bounds, which are generated at every stage of the gap-closing
procedure, will therefore be the best primal feasible solution among the 1st, 2nd, . . ., kth
best solutions of the Lagrangean. Thus when the upper bound is less than or equal to the
lower bound, we conclude that an optimal solution has been obtained.

4. Computational Results

As a first step, we used some synthetic data to test the usefulness of our models. Since
considerable experience has already been reported with DP in the literature on dynamic
pricing, we present a more extensive account of the numerical results with the integer
program. Finally, we conclude this section by showing how our models may be used with
real-world data obtained from a national grocery chain.

4.1 Synthetic data

We first ran a basic numerical test with the risk-neutral DP model using artificial data. We
were able to search for the optimal solution by exhaustive evaluation. The DP algorithm
produced the optimal solution as expected. Table 1 shows the details of this experiment.
More results with DP can be found in Neelakantan [34]. The transition probabilities can
be found via

P[Sr
k = l] = P[Zr,k = l · (q(r))−n],

where the probability can be easily determined from the distribution of Zr,k. The distribu-
tion of Zr,k is assumed to be normal in our experiments.

For the risk-sensitive model, we used a problem structure with K = 8 and R = 5.
The input data for µ and σ2 of Z are detailed in Tables 2 and 3. The set of prices is
Q = {0.1, 0.2, 0.3, 0.4, 0.5}. The optimal price for the kth period will be denoted by Q∗(k).
Tables 4 and 5 present the solutions obtained from using the Lagrangean relaxation for
Cases 1 though 10. Tables 6 and 7 are the corresponding tables for Cases 11 through 20.
As is clear from Tables 5 and 7, the technique is able to generate an optimal solution after
evaluating a fraction of the total number of solutions. The computer programs were written
in C using a Pentium processor with 512 MB of RAM capacity. The computational time
did not exceed 3 minutes in any of the cases.

4.2 A case study

We obtained real-world data from the Center for Relationship Marketing in the Department
of Marketing at the University of Buffalo. The data was related to a grocery item, and
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k 1 2 3 4 5 6 7 8 9 10
i = 20 10 9 10 8 10 10 10 10 8 10
i = 19 9 10 8 10 10 10 10 8 10
i = 18 9 10 8 10 10 10 10 8 10
i = 17 9 10 8 10 7 10 10 8 10
i = 16 9 10 8 10 7 10 10 8 10
i = 15 9 10 8 10 7 10 10 8 10
i = 14 9 10 8 10 7 10 10 8 10
i = 13 9 10 8 10 7 10 10 8 10
i = 12 9 10 8 10 7 10 10 8 10
i = 11 9 10 8 10 7 10 10 1 1
i = 10 9 10 8 10 1 1 1 1 1
i = 9 9 10 1 1 1 1 1 1 1
i = 8 1 1 1 1 1 1 1 1 1
i = 7 1 1 1 1 1 1 1 1 1
i = 6 1 1 1 1 1 1 1 1 1
i = 5 1 1 1 1 1 1 1 1 1
i = 4 1 1 1 1 1 1 1 1 1
i = 3 1 1 1 1 1 1 1 1 1
i = 2 1 1 1 1 1 1 1 1 1
i = 1 1 1 1 1 1 1 1 1 1
i = 0 1 1 1 1 1 1 1 1 1

Table 1: The values of p∗k(i) using the DP algorithm with the following parameters: η = 0.1;
µr,k = 100; C = 20; σr,k = 3 for all r and k; Q = {1, 2, . . . , 10}.

k 1 2 3 4
r = 1 µ11 = 0 µ12 = 10 µ13 = 20 µ14 = 30

σ2
11 = 1 σ2

12 = 2 σ2
13 = 3 σ2

14 = 4
r = 2 µ21 = 10 µ22 = 20 µ23 = 30 µ24 = 40

σ2
21 = 3 σ2

22 = 5 σ2
23 = 7 σ2

24 = 9
r = 3 µ31 = 20 µ32 = 30 µ33 = 40 µ34 = 50

σ2
31 = 5 σ2

32 = 7 σ2
33 = 9 σ2

34 = 11
r = 4 µ41 = 30 µ42 = 40 µ43 = 50 µ44 = 60

σ2
41 = 7 σ2

42 = 9 σ2
43 = 11 σ2

44 = 13
r = 5 µ51 = 40 µ52 = 50 µ53 = 60 µ54 = 70

σ2
51 = 9 σ2

52 = 11 σ2
53 = 13 σ2

54 = 15

Table 2: µr,k and σr,k for k = 1 through k = 4
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k 5 6 7 8
r = 1 µ15 = 40 µ16 = 50 µ17 = 60 µ18 = 70

σ2
15 = 5 σ2

16 = 6 σ2
17 = 7 σ2

18 = 8
r = 2 µ25 = 50 µ26 = 60 µ27 = 70 µ28 = 80

σ2
25 = 11 σ2

26 = 13 σ2
27 = 15 σ2

28 = 17
r = 3 µ35 = 60 µ36 = 70 µ37 = 80 µ38 = 85

σ2
35 = 13 σ2

36 = 15 σ2
37 = 17 σ2

38 = 19
r = 4 µ45 = 70 µ46 = 80 µ47 = 85 µ48 = 90

σ2
45 = 15 σ2

46 = 17 σ2
47 = 19 σ2

48 = 21
r = 5 µ55 = 80 µ56 = 85 µ57 = 90 µ58 = 100

σ2
55 = 17 σ2

56 = 19 σ2
57 = 21 σ2

58 = 23

Table 3: µr,k and σr,k for k = 5 through k = 8

Case B C η Q∗(k)
(k = 1, 2, . . . , 8)

1 300 400 0.1 0.1, 0.2, 0.2, 0.4, 0.5, 0.5, 0.5, 0.1
2 300 500 0.1 0.4, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.1
3 300 750 0.5 0.1, 0.4, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
4 300 1250 1.5 0.1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.1
5 300 1500 1.5 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.4, 0.1
6 300 2000 1.5 0.5, 0.5, 0.5, 0.5, 0.5, 0.4, 0.3, 0.5
7 300 5000 1.5 0.5, 0.5, 0.5, 0.5, 0.1, 0.5, 0.1, 0.5
8 400 400 0.1 0.1, 0.2, 0.2, 0.4, 0.5, 0.5, 0.5, 0.1
9 1000 400 0.1 0.1, 0.2, 0.2, 0.4, 0.5, 0.5, 0.5, 0.1
10 1000 750 0.5 0.1, 0.4, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

Table 4: Optimal prices for cases 1 through 10.
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Case E[Sales] E[Revenue] V[Revenue] X

1 397.92 174.71 19.67 129632
2 499.10 246.26 29.04 2699
3 749.46 368.28 57.7 194
4 1233.52 615.50 282 385701
5 1424.94 678.87 295.5 353776
6 1934.46 838.24 275.17 156732
7 4940.25 952.23 300 11931
8 397.92 174.71 19.67 129632
9 397.92 174.71 19.67 129632
10 749.46 368.28 57.7 194

Table 5: Results of the Lagrangean Relaxation technique for Cases 1 through 10: X denotes
the number of solutions examined, while the total number of solutions in each
problem is 58 = 390625.

Instance B C η Q∗(k)
(k = 1, 2, . . . , 8)

11 1000 1250 1.5 0.1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.1
12 1000 2000 1.5 0.5, 0.5, 0.5, 0.5, 0.5, 0.4, 0.3, 0.5
13 1500 400 0.1 0.1, 0.2, 0.2, 0.4, 0.5, 0.5, 0.5, 0.1
14 1500 750 0.5 0.1, 0.4, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
15 1500 2000 1.5 0.5, 0.5, 0.5, 0.5, 0.5, 0.4, 0.3, 0.5
16 1500 2000 2 0.5, 0.5, 0.5, 0.4, 0.5, 0.5, 0.5, 0.1
17 2000 2000 2 0.5, 0.5, 0.5, 0.4, 0.5, 0.5, 0.5, 0.1
18 2000 3000 1.5 0.5, 0.5, 0.5, 0.5, 0.5, 0.3, 0.2, 0.2
19 2000 3000 2.0 0.5, 0.5, 0.5, 0.5, 0.5, 0.4, 0.2, 0.5
20 2000 5000 1.5 0.5, 0.5, 0.5, 0.5, 0.5, 0.2, 0.1, 0.2

Table 6: Optimal prices for cases 11 through 20.
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Case E[Sales] E[Revenue] V[Revenue] X

11 1233.52 615.50 282 385701
12 1934.46 838.24 275.17 156732
13 397.92 174.71 19.67 129632
14 749.46 368.28 57.7 194
15 1934.46 838.24 275.17 156732
16 1995.00 960 1241.25 390006
17 1995.00 960 1241.25 390006
18 2951.59 887.48 340 67386
19 2988.89 1266.67 647.14 353495
20 4627.37 958.67 350 9645

Table 7: Results of the Lagrangean Relaxation technique for Cases 11 through 20: X de-
notes the number of solutions examined, while the total number of solutions in
each problem is 58 = 390625.

Case µr,k σr,k Total Revenues
1 56.33 3.0 352.62
2 56.33 3.5 312.31
3 56.33 4.0 386.93
4 56.33 4.5 369.29
5 56.33 5.0 359.84
6 56.33 5.5 358.02
7 56.33 6.0 369.40
8 56.33 6.5 329.51
9 56.33 7.0 360.21

Table 8: The expected revenues from the risk-neutral model.

came from a major grocery chain from the Northeastern United States. Several pieces of
information are required to compute optimal prices. More details on the weekly sales of the
grocery item and how the data was processed to extract information can be found in [34].
It was clear that the retailer normally sets the price at any amongst the following 3 values:
$1.99, $1.69, and $1.5. $1.99 is the price for the retailer’s peak season when equilibrium
conditions hold and $1.69 and $1.5 are the two discounted prices set during the retailer’s
clearance season. Each time-frame comprises of a 2-week peak season followed by a 1-week
clearance season. Each clearance season can be divided into 7 time intervals of a day each,
i.e., K = 7. The number of discount season prices to be chosen from was limited to the
price set Q = {1.29, 1.69, 1.99, 2.29, 2.69}. Table 8 lists the expected revenues generated
during the discount-week for each mean-variance combination using the DP algorithm.

For the risk-sensitive model, we used various values for the means and the standard
deviations (µq,k and σq,k) of the stochastic demand factor Zk

q . Based on the actual data
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obtained, µr,k is varied from 10 to 75 and σr,k from 2 to 7. In this way, 39 test instances
(cases) were generated using different combinations of these values. The beginning inventory
C was assumed to be 210 based on the data obtained, while the ceiling, B, on the total
risk was allowed to take any one of the following 3 values: 100, 200 and 500. The value of η
used was 0.7. The optimal prices, the expected revenues, and the variance of the revenues
generated during the discount-week are shown in Tables 9 and 10.

5. Conclusions

Dynamic pricing has attracted considerable attention in the last few years. A recent text by
Talluri and van Ryzin [47] treats this topic in depth. In this paper, we considered a dynamic
pricing problem encountered in the clearance period. We introduced dynamic-programming
and integer-programming models for dynamic pricing using the demand-response functions
that practicing retailers are comfortable with. Although our models focussed on the Cobb-
Douglas functions, our models are general enough to accommodate any other demand-
response function. To the best of our knowledge, this is the first work on risk-sensitive
pricing in the clearance-markdown period. Finally, we demonstrated that our models can
be used on real-world data, via a case study of a grocery item from a large grocery chain
in Northeastern USA.

A number of extensions to this problem are being considered by us. First, an interesting
extension is to consider the joint ordering-and-pricing problem in the context of clearance-
markdowns. Secondly, an extension to multiple products, where joint discounts can be
offered, seems to be quite appealing from the viewpoint of the real-world practitioner.
Thirdly, we are considering the addition of constraints, such as the requirement of minimum
inventory stocks into the demand-response functions, for future work.
Acknowledgements: We thank the Center for Relationship Marketing in the Department
of Marketing at University of Buffalo, State University of New York for providing useful
data. We also thank participants of the INFORMS 2004 Annual Conference in Denver for
helpful suggestions and discussions.
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Case B Q∗(k)
1 100 1.99, 2.69, 2.69, 2.69, 2.69, 2.69, 2.69
2 200 1.29, 1.29, 1.69, 1.69, 2.29, 2.69, 2.29
3 500 1.69, 1.69, 1.69, 1.69, 1.69, 2.69, 1.99
4 100 2.69, 2.69, 2.69, 2.69, 2.69, 2.69, 1.99
5 200 2.69, 2.69, 1.69, 1.69, 1.69, 1.69, 1.69
6 500 1.69, 1.69, 1.69, 1.69, 1.69, 2.69, 1.99
7 100 2.69, 2.69, 2.69, 2.69, 2.69, 2.69, 1.99
8 200 2.69, 2.29, 2.29, 1.69, 1.69, 1.29, 1.29
9 500 1.99, 1.99, 1.99, 1.99, 1.69, 1.69, 1.69
10 100 1.99, 2.69, 2.69, 2.69, 2.69, 2.69, 2.69
11 200 1.69, 1.69, 1.69, 1.69, 1.69, 2.69, 2.69
12 500 1.99, 1.99, 1.99, 1.99, 1.69, 1.69, 1.69
13 100 1.99, 2.69, 2.69, 2.69, 2.69, 2.69, 2.69
14 200 1.29, 1.29, 1.29, 1.69, 2.29, 2.29, 2.69
15 500 1.69, 1.69, 1.69, 1.99, 1.69, 1.69, 1.69
16 100 1.99, 2.69, 2.69, 2.69, 2.69, 2.69, 2.69
17 200 1.29, 1.29, 1.29, 1.69, 2.29, 2.29, 2.69
18 500 1.69, 1.69, 1.69, 1.99, 1.69, 1.69, 1.69
19 100 2.69, 2.69, 2.69, 2.69, 2.69, 2.69, 1.99
20 200 2.69, 2.69, 1.69, 1.29, 1.29, 1.69, 1.99
21 500 1.99, 1.99, 1.69, 1.69, 1.69, 1.69, 1.99
22 100 1.99, 2.69, 2.69, 2.69, 2.69, 2.69, 2.69
23 200 1.69, 1.99, 1.69, 1.29, 1.29, 2.69, 2.69
24 500 1.99, 1.99, 1.69, 1.69, 1.69, 1.69, 1.99
25 100 2.69, 2.69, 2.69, 2.29, 2.69, 2.69, 2.69
26 200 2.69, 2.69, 1.69, 1.29, 1.29, 1.29, 2.69
27 500 1.99, 1.99, 1.69, 1.69, 1.69, 1.69, 1.99
28 100 2.29, 2.69, 2.69, 2.69, 2.69, 2.69, 2.69
29 200 1.29, 1.29, 2.69, 2.69, 2.69, 1.69, 1.29
30 500 1.69, 1.69, 1.69, 1.99, 1.69, 1.69, 1.69
31 100 2.29, 2.69, 2.69, 2.69, 2.69, 2.69, 2.69
32 200 1.29, 1.29, 1.29, 1.69, 2.69, 2.69, 2.69
33 500 1.69, 1.69, 1.69, 1.99, 1.99, 1.99, 1.99
34 100 2.69, 2.69, 2.69, 2.69, 2.69, 2.69, 2.29
35 200 2.69, 2.69, 2.69, 1.69, 1.29, 1.29, 1.29
36 500 1.99, 1.99, 1.99, 1.99, 1.69, 1.69, 1.69
37 100 2.29, 2.69, 2.69, 2.69, 2.69, 2.69, 2.69
38 200 2.69, 1.69, 1.29, 2.69, 2.69, 1.69, 1.29
39 500 1.99, 1.69, 1.69, 1.69, 1.99, 1.99, 1.99

Table 9: Optimal prices with the risk-sensitive model
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Case E[Revenue] V[Revenue] X

1 198.94 99.62 78077
2 363.41 198.15 17942
3 378.07 226.04 9375
4 249.27 99.62 75063
5 355.52 198.81 23646
6 378.07 246.39 9375
7 212.39 99.62 78093
8 357.00 197.67 20372
9 374.02 236.34 10217
10 208.90 99.62 78116
11 342.07 198.81 31926
12 374.02 247.74 10217
13 158.57 99.62 78099
14 308.37 199.34 20782
15 354.09 261.90 2149
16 158.57 99.62 78099
17 308.37 199.34 20782
18 354.09 261.90 2149
19 189.30 99.62 78115
20 348.34 199.51 16306
21 376.94 246.75 4210
22 189.30 99.62 78116
23 347.75 199.25 16663
24 376.94 250.54 4210
25 180.71 99.07 78117
26 333.48 198.72 26484
27 376.94 248.65 4210
28 147.07 99.07 78117
29 292.13 198.72 33059
30 354.09 261.90 2149
31 200.89 99.07 78117
32 341.54 198.72 32366
33 374.02 242.02 10217
34 200.89 99.07 78117
35 341.54 198.72 32366
36 374.02 242.02 10217
37 199.94 99.07 78117
38 327.31 196.30 44160
39 372.26 242.02 11020

Table 10: Expected value and variance of revenues obtained from the risk-sensitive model.
X denotes the number of solutions examined.
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