
European Journal of Operational Research 155 (2004) 654–674

www.elsevier.com/locate/dsw
Stochastics and Statistics

Reinforcement learning for long-run average cost

Abhijit Gosavi *

State University of New York at Buffalo, 317 Bell Hall, Buffalo, NY 14260, USA

Received 16 August 2000; accepted 24 July 2002
Abstract

A large class of sequential decision-making problems under uncertainty can be modeled as Markov and semi-

Markov decision problems (SMDPs), when their underlying probability structure has a Markov chain. They may be

solved by using classical dynamic programming (DP) methods. However, DP methods suffer from the curse of di-

mensionality and break down rapidly in face of large state-spaces. In addition, DP methods require the exact com-

putation of the so-called transition probabilities, which are often hard to obtain and are hence said to suffer from the

curse of modeling as well. In recent years, a simulation-based method, called reinforcement learning (RL), has emerged

in the literature. It can, to a great extent, alleviate stochastic DP of its curses by generating �near-optimal� solutions to
problems having large state-spaces and complex transition mechanisms. In this paper, a simulation-based algorithm

that solves Markov and SMDPs is presented, along with its convergence analysis. The algorithm involves a step-size

based transformation on two-time scales. Its convergence analysis is based on a recent result on asynchronous con-

vergence of iterates on two-time scales. We present numerical results from the new algorithm on a classical preventive

maintenance case study of a reasonable size, where results on the optimal policy are also available. In addition, we

present a tutorial that explains the framework of RL in the context of long-run average cost SMDPs.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Many real-life decision-making problems are

found in stochastic environments, the uncertainty

of which adds to the complexity of their analysis.

A subset of these stochastic problems can be for-
mulated as Markov or semi-Markov decision

problems. Examples of stochastic systems abound

in the service and manufacturing industries. Some
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examples are as follows: finding optimal inspection

policies in a quality control problem [9], optimal

control of a queuing problem with two customer

types [29], part selection in an FMS [27], optimal

maintenance of a production–inventory system

[11], a stochastic economic lot-size scheduling
problem (SELSP) with two part types [12], and

Sennott [28] for some queuing problems.

A Markov decision problem (MDP) or an

SMDP (semi-Markov decision problem) may be

solved by either iteratively solving a linear system

of equations developed by Bellman [2] (the method

is called policy iteration) or by using the Bellman
ed.
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transformation in an iterative style to compute the
optimal value function (the method is called value

iteration). Dynamic programming (DP) methods

[24] such as value iteration and policy iteration

have traditionally been used for solving MDPs and

SMDPs. These methods require the exact compu-

tation and storage of the so-called transition

probability matrices. Many real-life problems have

large state-spaces (of the order of millions of states
or even larger numbers) where computation or

even storage of these matrices is difficult. DP is

hence said to have been cursed by the curse of di-

mensionality and the curse of modeling. In solving

problems with a large state-space, one is forced to

resort to problem-specific heuristics to obtain so-

lutions, examples of which are ubiquitous in op-

erations research (see [27] in relation to an FMS
problem and [12] in the context of SELSP).

In recent years, a method called reinforcement

learning (RL) has emerged in the literature. It

combines concepts from DP, stochastic approxi-

mation (SA) via simulation, and function ap-

proximation (which may be performed with the

help of regression or neural networks). Essentially,

it employs a step-size version of the Bellman
transformation, within a simulator. It has been

shown to supply optimal or near-optimal solutions

to large MDPs/SMDPs even when they are con-

sidered intractable via traditional DP methods. As

a result, there is great excitement about RL

methods in the operations research community. A

noteworthy feature of RL is that it can be very

easily integrated into modern simulation packages
such as ARENA. 1 Compared to DP, which in-

volves the tedious (and often impossible) first step

of writing the expressions for the transition prob-

abilities associated with each state–action pair,

followed by value iteration or policy iteration, the

computational effort and the time spent in imple-

menting an RL model in C or even in a modern

simulation package is extremely low, which adds to

the attractiveness of this approach. Textbook

treatment on this subject can be found in Sutton

and Barto [32] and Bertsekas and Tsitsiklis [4].

Convergence properties of RL algorithms have
1 ARENA is marketed by Systems Modeling Corporation.
been studied in existing literature through (i) the
use of contraction mappings of transformations in

the algorithms [4] and (ii) the use of ordinary dif-

ferential equations (ODEs) that track the trans-

formations [1,7,17].

This paper makes two contributions to the

current literature. First, it presents a new RL al-

gorithm for solving MDPs and SMDPs under the

long-run average cost criterion. An analysis of the
convergence of the new algorithm, using a method

that tracks ODEs underlying the transformations

(required in the algorithm), has also been pre-

sented. Second, this paper provides numerical ev-

idence of its convergence on an SMDP of a

reasonable size and a complex transition mecha-

nism (obtained from the literature in preventive

maintenance).
The remainder of this paper is organized as

follows. Section 2 provides a brief overview of the

existing literature on the subject of MDPs,

SMDPs, and RL. Section 3 contains an account on

MDPs, SMDPs, RL, and the underlying frame-

work of DP. In Section 4, a mathematically con-

cise version of the new RL algorithm is presented.

Sections 5 and 6 deal with the convergence issues
related to RL algorithms, the underlying frame-

work of the ODE method and the convergence

proof of our new algorithm. Section 7 contains

numerical results, obtained from a case study re-

lated to decision-making in a preventive mainte-

nance domain. Section 8 discusses other average

cost RL algorithms in the literature. The implica-

tions of this research and some general conclusions
have been placed in Section 9.
2. Overview of the related literature

MDPs involve a decision maker, which can in-

fluence the behavior of the system as it evolves

through time over a finite set of states. Optimal
control is exercised by the decision maker by se-

lecting the optimal action in each state; optimality

is measured in terms of a pre-determined perfor-

mance criterion like total discounted cost (summed

over the time horizon) or the long-run average cost

(average cost per unit time over the entire time

horizon). Outside linear programming, two
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methods for solving MDPs and SMDPs are: policy
iteration and value iteration. We shall focus on the

latter under the long-run average cost criterion.

Textbooks written by Bertsekas [3] and Puterman

[24] discuss this topic in great detail. Some of the

pioneers of RL are Sutton [31] and Watkins [35].

For a detailed account on early average cost RL

(ARL) algorithms, the reader is referred to Ma-

hadevan [21]. A number of algorithms have
appeared in the ARL literature for MDPs such as

R-learning [26,30,33] but they do not discuss con-

vergence. Semi-Markov average reward technique

(SMART) [10], designed for SMDPs, also does not

present a convergence proof. The first convergent

ARL algorithm for MDPs appeared in [1]. The

first result in using an ODE method to analyze SA

schemes, such as the ones encountered in RL, is
due to Ljung [20]. An alternative analysis was

presented in Kushner and Clark [18]. Some of the

first applications of the ODE framework in RL

have appeared in [1,7,17].

In DP all variables (for all the different states)

are updated in every iteration simultaneously, i.e.,

synchronously. However, in RL, the system is

simulated and the order in which variables are
updated depends on the order in which variables

(states) are visited in the simulator. The haphazard

order of visiting states does not ensure that the

variables associated with the states are updated

once in every cycle as in a synchronous update.

This is called asynchronous updating. Using the

ODE method, Borkar [5] analyzed SA operating in

a synchronous style, on a two-time scale, in a very
general context. These results were subsequently

extended to the asynchronous case [1,6,7].
3. Underlying framework of Markov decision theory

This section gives an outline of the framework

underlying MDPs and SMDPs. It concludes with
an analysis of how the framework of RL is rooted

in that of DP.

3.1. MDPs and SMDPs

Formally an MDP can be defined as follows.

Let
X ¼ fXn : n 2N;Xn 2 Sg ð1Þ

denote the underlying Markov chain of an MDP,

where Xn denotes the system state at the nth deci-

sion-making epoch, S denotes the state-space, and

N denotes the set of integers. At any decision-

making epoch n, where Xn ¼ i 2 S, the action
taken is denoted by An ¼ a 2 AðiÞ. AðiÞ denotes the
set of possible actions in state i and UAðiÞ ¼ A.
Associated with any action a 2 A is a transition

matrix P ðaÞ ¼ fpði; a; jÞg of the Markov chain X,

where pði; a; jÞ represents the probability of mov-

ing from state i to state j under action a in one

step. A cost function is defined as r : S � A! R,

where R denotes the real line, and rði; aÞ is the
expected cost for taking action a in state i. It is

assumed that the state-space of the Markov chain

considered in this paper is finite. Also, for the sake

of simplicity, only those problems which have

aperiodic and unichain Markov chains are con-

sidered. DP methods can find a stationary deter-

ministic policy p	 (which is a mapping p	 : S ! A),
that is optimal with respect to the average cost
criterion. (A stationary policy is one that is inde-

pendent of time.) Under the assumption of a finite

state-space, the average cost can be shown to be

finite.

When sojourn times in an MDP are drawn from

general probability distributions, the problem can

often be modeled as a SMDP. Every SMDP is

characterized by two processes namely the natural

process and the decision process. Suppose, for each

n 2N, a random variable Xn assumes values from

a countable set S and a random variable Tn takes

values in Rþ ¼ ½0;1, such that 0 ¼ T0 6
T1 6 T2 � � �. The decision process ðX;TÞ ¼ fXn; Tn :
n 2Ng is said to be semi-Markovian with state-

space S, because for all n 2N, j 2 S, and t 2 Rþ,

the following semi-Markov condition is satisfied:

PfXnþ1 ¼ j; Tnþ1 � Tn 6 tjX0; . . . ;Xn; T0; . . . ; Tng
¼ PfXnþ1 ¼ j; Tnþ1 � Tn 6 tjXn; Tng; ð2Þ

where the notation Pf:j:g denotes a conditional

probability in which the values of the variables in

the condition are assumed to be known. The nat-
ural process Y ¼ fYt : t 2 Rþg, where Yt denotes

the system state at time t and where Yt ¼ Xn if

t ¼ Tn, can be viewed as a continuous time process
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that contains information about the system state at

all times including the decision-making instants.

The natural process Y and the decision process

ðX ; T Þ agree at the decision-making instants but

may not agree at other times. Let, for i 2 S and

a 2 Ai, gði; a; jÞ denote the immediate cost (or one-

step transition cost) incurred when i is the deci-

sion-making state, in which an action a is chosen
and the next decision-making state is j. Let tði; a; jÞ
denote the time spent in the state transition. Also

let ik represent the state visited in the kth decision-

making epoch and ak represent the action taken in

that epoch. Then the maximum average cost of an

SMDP under a policy p (that dictates the path

followed by the Markov chain) for an infinite time

period ðT Þ, which is to be minimized can be given as

qpðiÞ ¼ lim sup
T!1

PT
k¼1 gðik; ak; ikþ1ÞPT
k¼1 tðik; ak; ikþ1Þ

: ð3Þ

We next present the Bellman equation, which
forms the foundation stone of stochastic DP and

so also of RL.

3.1.1. The Bellman optimality equation for average

cost MDPs and SMDPs

Theorem 1. Under considerations of average cost
for an infinite time horizon for any finite unichain
SMDP, there exists a scalar q	 and a value function
R	 satisfying the system of equations for all i 2 S,

R	ðiÞ¼min
a2Ai

rði;aÞ
 

� q	yði;aÞþ
X
j2S

pði;a;jÞR	ðjÞ
!
;

such that the greedy policy p	 formed by selecting
actions that minimize the right-hand side of the
above equation is average cost optimal, where rði; aÞ
is the expected immediate cost when an action a is
taken in state i, yði; aÞ is the expected sojourn time
in state i when action a is taken in it, and pði; a; jÞ is
the probability of transition from state i to state j
under action a in one step.

For the MDP case, the Bellman equation can be

obtained by setting yði; aÞ ¼ 1 for values of ði; aÞ.
We next present the value-iteration algorithm that

uses the Bellman equation to generate an optimal

policy in case of MDPs.
3.1.2. Value iteration for MDPs

Let RmðiÞ be the total expected value of evolving

through m stages starting at state i, and w be the

space of bounded real valued functions on S.

1. Select R0 2 w, specify � > 0 and set m ¼ 0.

2. For each i 2 S, compute Rmþ1ðiÞ by

Rmþ1ðiÞ ¼ min
a2Ai

rði; aÞ
(

þ
X
j2S

pði; a; jÞRmðjÞ
)
:

ð4Þ
3. If spðRmþ1 � RmÞ < �, go to step 4. Else incre-

ment n by 1 and return to step 2. Here sp de-

notes span, which for a vector b is defined as

spðbÞ ¼ maxi2S bðiÞ �mini2S bðiÞ [24].
4. For each i 2 S, choose the action d�ðiÞ as

d�ðiÞ 2 argmina2Ai rði; aÞ
(

þ
X
j2S

pði; a; jÞRmðjÞ
)
ð5Þ

and stop.

Value iteration has been shown to be conver-

gent. However it is numerically unstable [24] and

hence in practice a relative value-iteration method

is used, which we describe next.

3.1.3. Relative value iteration for MDPs

1. Select R0 2 w, choose k	 2 S arbitrarily, specify

� > 0, and set m ¼ 0.

2. For each i 2 S, compute Rmþ1ðiÞ by

Rmþ1ðiÞ ¼ min
a2Ai

rði; aÞ
(

� Rmðk	Þ

þ
X
j2S

pði; a; jÞRmðjÞ
)
: ð6Þ

3. If spðRmþ1 � RmÞ < �, go to step 4. Otherwise in-
crement m by 1 and return to step 2.

4. For each i 2 S, choose the action d�ðiÞ as

d�ðiÞ 2 argmina2Ai rði; aÞ
(

þ
X
j2S

pði; a; jÞRmðjÞ
)
ð7Þ

and stop.
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It is clear that this algorithm differs from value
iteration in subtracting the value function of some

state ðRðk	ÞÞ in each update. The reason this al-

gorithm converges to the same solution as value

iteration is essentially the vectors (of value func-

tion in each state) generated by the two methods

differ from each other by a constant ðRðk	ÞÞ, but
their relative values are same and so is the se-

quence of minimizing actions in each case. Hence
one may subtract any value in place of Rðk	Þ and
still get an optimal algorithm. This is why one can

also subtract the optimal average cost ðq	Þ. In fact,

this would give us a transformation identical to the

Bellman transformation. We shall discuss this in

more detail in the context of our algorithm. But let

us now briefly discuss how such algorithms may be

implemented in a simulator, which is the central
idea under RL.

3.2. Reinforcement learning

RL is a simulation-based method where the

optimal value function is approximated using

simulation. We shall first present an intuitive ex-

planation of value-iteration based RL, which is
also called Q-learning. Thereafter we shall discuss

the value-iteration roots of Q-learning.

3.2.1. The working mechanism of Q-learning

An RL model consists of four elements (see Fig.

1), which are namely an environment, a learning

agent with its knowledge base, a set of actions that
Fig. 1. Schematic showing how Q-learning works.
the agent can choose from and the response from
the environment to the different actions in different

states. The knowledge base is made up of the so-

called Q-factors for each state–action pair. After

examining the numerical values (which may be in

terms of costs or rewards) of these Q-factors (we

shall define them shortly) for the different actions
that may be taken in the current state, the agent

decides which action to take in that state. To every
action, the possible response is simulated. To be

able to do this, complete knowledge of the random

variables that govern the system dynamics is nec-

essary to the simulator.

In what follows, we describe the mode in which

‘‘learning’’ (SA) occurs. Before learning begins, the

values Qði; uÞ for all states i and all actions u are set
to the same value. When the system is in a deci-
sion-making state i, the learning agent examines

the Q-factors for all actions in state i and selects

the action b with the minimum Q-factor (if values
are in terms of cost). This leads the system along a

path till the system encounters another decision-

making state ðjÞ. During the travel over this path,

i.e. a state-transition from i to j, which is simulated

in the simulator, the agent gathers information
from the environment about the immediate costs

incurred and the time spent during the state-

change. This information is used by the agent with

the help of its learning algorithm to update the

factor Qði; bÞ. A poor action results in an increase

of this value while a good action that results in low

cost causes the value to be decreased (and vice-

versa if the value is in terms of rewards). Of course
the exact change is determined by the algorithm

which is developed from the Bellman equation. In

other words, the performance of an action in a

state serves as an experience to the agent which is

used to update it knowledge base. Thus every piece

of experience makes the agent a trifle smarter in its

perception of the environment than it was before.

As all state–action pairs are encountered (theo-
retically an infinite number of times), the agent

learns the optimal actions in each state.

When the system visits a state, the agent selects

the action with the lowest Q-factor (or the highest
if it is in terms of rewards) for that state–action

pair. Therefore in the event of that action pro-

ducing a low immediate cost, the updating mech-
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anism causes the agent to be partial to that action.
Similarly, the opposite is possible when the action

produces a high immediate cost. This can cause

considerable trouble in learning the right policy

because the short-term effect of an action can be

misleading. Consequently it becomes necessary to

try all actions in all states. Therefore occasionally

the agent has to divert from its policy of selecting

the most preferred action (greedy strategy) and
instead select some other action. This is called

exploration. As good actions are rewarded and bad

actions punished over time, some actions tend to

be more and more preferable and some less. The

learning phase ends when a clear trend appears in

the knowledge base and an optimal or near-opti-

mal policy is learned. Of course, by this point,

exploration must cease. We next explain how the
updating equation is based on the Bellman equa-

tion.

3.3. Dynamic programming roots of RL

Q-learning essentially solves the Bellman equa-

tion iteratively in an asynchronous style to obtain

the optimal value function. In what follows, we
shall present only the transformations related to a

version of Q-learning based on average cost value

iteration for MDPs (discussed in Section 3.1.2).

The idea is to show its Bellman equation links.

The optimal Q-factor, Qði; uÞ for a pair ði; uÞ
with i 2 S and u 2 AðiÞ may defined as follows in

the context of the average cost MDP:

Qði; uÞ ¼
X
j2S

pði; u; jÞ½gði; u; jÞ þ R	ðjÞ; ð8Þ

where gði; u; jÞ is the immediate cost incurred in

transition from state i to state j under the action u.
Now the Bellman equation for average cost that is

used in value iteration is as follows:

R	ðiÞ ¼ min
u2AðiÞ

X
j2S

pði; u; jÞ½gði; u; jÞ þ R	ðjÞ 8i:

ð9Þ
Using Eqs. (8) and (9), we have that

R	ðiÞ ¼ min
u2AðiÞ

Qði; uÞ 8i: ð10Þ

From Eqs. (8) and (10), it follows that
Qði; uÞ
¼
X
j2S

pði; u; jÞ½gði; u; jÞ þ min
v2AðjÞ

Qðj; vÞ 8ði; uÞ:

ð11Þ

RL requires the updating to be gradual, for at least

two reasons. One reason is that RL is necessarily

asynchronous and can diverge without proper

learning rates [6]. The second reason is that
avoiding the computation of the transition prob-

abilities is a major goal of RL, which too, we shall

see shortly, requires a learning rate. The next

equation gives a step-size or learning rate version

of Eq. (11). For example for a step-size c, where
c 2 ð0; 1, the updating may be given as follows:

Qði; uÞ  ð1� cÞQði; uÞ
þ c

X
j2S

pði; u; jÞ½gði; u; jÞ þ min
v2AðjÞ

Qðj; vÞ

8ði; uÞ: ð12Þ

Eq. (12) gives the updating equation for a model-

based Q-learning algorithm. The Robbins–Monro

[25] SA scheme (i.e. updating with a learning rate)

is used to approximate the mean of a random

variable with methods such as simulation. It can
be expressed as follows: Q ð1� cÞQþ c½f ðQÞ,
(notice the similarity with Eq. (12)) where the term

in the square brackets is a function of the Q vector.

It can be shown that a suitable learning rate (1=k if
k denotes the number of iterations) produces an

averaging effect in the sense that if it is used over a

sufficiently long updating period, we obtain on the

left-hand side an average of f ðQÞ (in case f ðQÞ is
stochastic). Since the term f ðQÞ is averaged in any

case, one can replace the expectation (over j) in

Eq. (12) by a sample. And this gives us a Robbins–

Monro version of Q-learning, which can be written

as follows:

Qði; uÞ  ð1� cÞQði; uÞ þ c½gði; u; jÞ þmin
v2Aj

Qðj; vÞ:

ð13Þ

This is the model-free (free of transition proba-

bilities) Q-learning analogue of average cost value

iteration (the original Q-learning was presented in

the context of discounted cost by Watkins [35]).

However, this version is based on the average cost
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value-iteration algorithm (just as Watkins�
Q-learning was based on discounted cost value it-

eration) and average cost value iteration is nu-

merically unstable (see both Bertsekas [3] and

Puterman [24] for a clear explanation of this phe-

nomenon). For a numerically stable version of Q-
learning, one has to use a relative value-iteration

method, which may have to run on two-time scales
in the simulator.

The motivation for the above discussion was

that many average cost value-iteration RL algo-

rithms may be similarly connected to DP. It must

be emphasized here that RL algorithms must

converge asynchronously, to be of any use. This is

because in RL, the updating is performed in a

simulator. In DP, the updating can be synchro-
nous (where all states are updated simultaneously

in any given iteration), which considerably sim-

plifies its convergence analysis. We should also

mention at this point that these Q-factors can be

suitably stored using neural networks or regres-

sion, which gives RL the power to be able to

handle large state-spaces. Using a neural network,

for example, one may be able to store a million Q-
factors using a hundred weights (values). In the

next section, we present a new RL algorithm for

SMDPs for optimizing average cost, over an infi-

nite time horizon.
4. The new algorithm

The new algorithm has its roots in a relative

value-iteration method in which the average cost

forms the subtraction term. The average cost is

approximated on one time scale and the Q-factor
on the other. In this section, we shall discuss the

core of the new algorithm leaving the implemen-

tational details to Section 8. We first introduce

some notation that we shall need.
Let Qk be the vector of Q-values at the kth it-

eration. Let fekg be the sequence of states visited

in the simulation till the kth epoch. Now fekg can
also be viewed as a sequence of vector-valued

random variables over S (the set of decision-

making states), subject to the discrete probability

distribution, Probabilityðekiu ¼ jÞ ¼ pði; u; jÞ, where
pði; u; jÞ is the one-step transition probability of
going from state i to state j under action u. The
notation ekiu denotes the state in the ðk þ 1Þth
epoch if the state in the kth epoch was i and the

action taken was u. Two learning rates on two-

time scales will be used and they are denoted by a
and b respectively. The learning rate a at any de-

cision-epoch for each state–action pair depends on

the function mð:Þ which is the number of times the

state–action pair was tried till that decision epoch.
And b depends on the number of decision epochs.

In what follows, first a version of the algorithm

suitable for use with MDPs is presented. There-

after the SMDP extension is discussed.

4.1. MDP version

The core of the new algorithm for MDPs may
be given by the following two updating equations:

For all ði; uÞ 2 ðS � AÞ,

Qkþ1ði; uÞ ¼ Qkði; uÞ þ aðmðk; i; uÞÞ½gði; u; ekiuÞ
þmin

v
Qkðekiu; vÞ � qk � Qkði; uÞ

� Iðði; uÞ ¼ /kÞ; ð14Þ

qkþ1 ¼ ð1� bðkÞÞqk þ bðkÞ ½ðJðkÞq
kÞ þ gði; u; ekiuÞ
Jðk þ 1Þ ;

ð15Þ

where JðkÞ is the number of state-transitions up to

the kth iteration (for MDPs JðkÞ ¼ k),
/ ¼ f/1;/2; . . .g is the sequence of state–action
pairs tried in the learning process, and /k is the

state–action pair tried in the kth epoch. Now Eq.

(15) has a Robbins–Monro version:

qkþ1 ¼ ð1� bðkÞÞqk þ bðkÞgði; u; ekiuÞ: ð16Þ

The Robbins–Monro version of the new algorithm

for MDPs would use Eqs. (14) and (16). The

equivalence of both forms follows from the valid-

ity of the Robbins–Monro SA scheme.

4.2. SMDP version

The new Q-learning algorithm for SMDPs may

be written with the following two equations:

For all ði; uÞ 2 ðS � AÞ;
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Qkþ1ði; uÞ ¼ Qkði; uÞ þ aðmðk; i; uÞÞ½gði; u; ekiuÞ
þmin

v
Qkðekiu; vÞ � qktði; u; ekiuÞ

� Qkði; uÞIðði; uÞ ¼ /kÞ; ð17Þ

qkþ1 ¼ ð1� bðkÞÞqk þ bðkÞ ½ðT ðkÞq
kÞ þ gði; u; ekiuÞ
T ðk þ 1Þ ;

ð18Þ
where T ðkÞ denotes the sum of the time spent in all

states visited till the kth iteration.
The SMDP version of the algorithm given by

Eqs. (17) and (18) has a Robbins–Monro version.

It also makes use of the renewal reward theorem.

The term qk in Eq. (17) would have to be replaced

by Ck=T k and instead of Eq. (18) the following

equations would be used to update the terms Ck

and T k:

Ckþ1 ¼ ð1� bðkÞÞCk þ bðkÞgði; u; ekiuÞ ð19Þ
and

T kþ1 ¼ ð1� bðkÞÞT k þ bðkÞtði; u; ekiuÞ: ð20Þ
The next section deals with the convergence ana-

lysis of the new algorithm.
5. The ODE framework and stochastic approxima-

tion

We next discuss the framework of ODEs in

relation to SA schemes. If one is interested in

solving a system of equations of the form

F ðrÞ ¼ r; ð21Þ
where F is a function from Rn into itself and r is a
vector, one possible algorithm to solve this system

is

r ð1� cÞr þ cF ðrÞ; ð22Þ
where c is a step-size or learning rate, usually

chosen to be smaller than 1. Sometimes the form

of F ðrÞ is not known completely. The example of

interest to us here is that of the Bellman equation

without its transition probabilities. An estimate of

F ðrÞ can however be obtained through simulation.

In other words, it is possible to gain access to a
noisy random variable s, where s ¼ F ðrÞ þ w and

w is a random noise. Both simulation and real
experiments usually have such a noise associated

with their outcomes. Therefore it is reasonable to

use s in place of F ðrÞ and the resulting algorithm

would then become

r ð1� cÞr þ cðF ðrÞ þ wÞ: ð23Þ
The algorithm is called a stochastic approximation
algorithm. The Robbins–Monro SA method serves

as the foundation of model-free RL algorithms

(which do not use transition probabilities). Sup-

pose that F ðrÞ ¼ E½gðrÞ (E here stands for expec-

tation while gðrÞ is a random variable). One way to

estimate F ðrÞ then would be to obtain several

samples g1ðrÞ; g2ðrÞ; . . . ; gkðrÞ and then use

F ðrÞ ¼
Pk

i¼1 giðrÞ
k

: ð24Þ

As k becomes large, this sample mean on the right-
hand side of Eq. (24) starts converging to the true

mean E½gðrÞ. At the other extreme, if k ¼ 1 then

the estimate of F ðrÞ is based on a single sample.

The SA algorithm then becomes

r ð1� cÞr þ cgðrÞ: ð25Þ
This algorithm is called the Robbins–Monro al-
gorithm. It is okay to use k ¼ 1, since (under cer-

tain restriction on c) it has been shown that r
anyway tends to E½gðrÞ due to the averaging na-

ture of the SA scheme. The SA scheme given in

(22) may also be written as follows:

rkþ1 ¼ rk þ cðF ðrkÞ � rkÞ: ð26Þ
This may be rewritten as

rkþ1 � rk
c

¼ F ðrkÞ � rk; ð27Þ

which suggests a continuous time version

drðtÞ
dt
¼ F ðrðtÞÞ � rðtÞ; ð28Þ

using an ODE.

Consider a situation where SAs are taking place

on two different time scales in the same simulation

environment. Let Ið:Þ be an identity function

which takes the value of 1 when the condition

within the round brackets ð:Þ is satisfied and 0
when it is not. Let fxkg and fykg be sequences in

Rn and Rl respectively, generated according to the

following schemes on two different time scales.

For i ¼ 1; . . . ; n and j ¼ 1; . . . ; l :
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xkþ1i ¼ xki þ aðqðk; iÞÞðhiðxk; ykÞ þ wk
1iÞIði ¼ /k

1Þ;
ð29Þ

ykþ1j ¼ ykj þ bðsðk; jÞÞðfjðxk; ykÞ þ wk
2jÞIðj ¼ /k

2Þ;
ð30Þ

where f/k
1g and f/k

2g are random processes that

take values over the sets S1 ¼ f1; 2; . . . ; ng and

S2 ¼ f1; 2; . . . ; lg respectively, hð:; :Þ and f ð:; :Þ are
arbitrary functions on ðxk; ykÞ, wk denotes the noise

term and

qðk; iÞ ¼
Xk
m¼0

Iði ¼ /m
1 Þ; ð31Þ

sðk; jÞ ¼
Xk
m¼0

Iðj ¼ /m
2 Þ: ð32Þ

In context of ARL, xk and yk represent the action

values and the average cost respectively at the kth
iteration. So n equals the number of state–action
pairs and l would equal 1. Hence at every state

change, the second sequence registers j ¼ 1. Now

/k
1 denotes the state–action pair visited at the kth

state change and so depending on the state–action

pair visited, the respective action value will un-

dergo a change; others will remain unchanged.

Step-sizes a and b depend on q and s respectively.
(See Remark 4 in Section 6.2 on how such a de-
pendence may be ensured roughly in RL.) Now

qðk; iÞ for a given state–action pair represents the

number of times the state i has been visited till the

kth iteration of the simulation and sðk; jÞ denotes
the number of times state-changes have taken

place till the kth iteration in the simulation. (It

may be noted that since l ¼ 1, sðk; jÞ is always

sðk; 1Þ in the ARL context.) The mathematical
definitions of the sequences given above help to

formalize the dynamics of the SA schemes under-

lying average cost RL algorithms. In addition, the

following set of assumptions are also needed.

5.1. Assumptions

1. The functions h and f are Lipschitz continuous
(see Appendix A for a definition of Lipschitz

continuity).
2. There exist A > 0 and B > 0 such that for all

i ¼ l; 2; . . . ; n and j ¼ 1; 2; . . . ; l with probabil-

ity 1,

lim
k!1

inf
qðk; iÞ
k þ 1

PA; ð33Þ

and

lim
k!1

inf
sðk; jÞ
k þ 1

PB: ð34Þ

3. The step-sizes a and b satisfy the standard step-

size conditions given in Appendix A. In addi-

tion they must satisfy the following condition:

lim
k!1

sup
bðkÞ
aðkÞ ¼ 0: ð35Þ

4. For some constants A1, B1, D1, A2, B2, D2 the

following condition is satisfied:

E½wk
1jðxk; . . . ; x0; yk; . . . ; y0;wk�1; . . . ;w0Þ ¼ 0;

ð36Þ

E½kwk
1k

2jðxk; . . . ; x0; yk; . . . ; y0;wk�1; . . . ;w0Þ
6A1 þ B1kxkk2 þ D1kykk2; ð37Þ

E½wk
2jðxk; . . . ; x0; yk; . . . ; y0;wk�1; . . . ;w0Þ ¼ 0;

ð38Þ
and

E½kwk
2k

2jðxk; . . . ; x0; yk; . . . ; y0;wk�1; . . . ;w0Þ
6A2 þ B2kxkk2 þ D2kykk2: ð39Þ

5. For all y 2 Rl, the ODE

dx
dt
¼ hðxðtÞ; yÞ ð40Þ

has an asymptotically stable critical point GðyÞ
(see Appendix A for a definition) such that the

map G is Lipschitz continuous.

6. The ODE

dy
dt
¼ f ðGðyðtÞÞ; yðtÞÞ ð41Þ

has a global asymptotically stable critical point

y	.

Here are the intuitive meanings of some of these

assumptions. The second assumption says that
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each state–action pair is visited after a finite time
interval. The third assumption is very crucial for

these schemes to work. It says that the second it-

eration is much slower than the first because of its

smaller step-size. The third assumption implies that

the fast iteration in x sees the slower iteration in y as
a constant and hence converges, while the slower

iteration sees the faster iteration as having con-

verged. The limiting behavior of the slower itera-
tion is given by the ODE in assumption 6 while that

of the faster one is given by that in assumption 5.

As a result, fykg should hence converge to y	, xk

should converge to f ðy	Þ and together the se-

quences should converge to ðf ðy	Þ; y	Þ. In fact, this

is a result due to Borkar [5] which we state next.

5.1.1. Borkar’s Lemma

Consider the coupled sequence fðxk; ykÞg gener-
ated as in Eqs. (29) and (30) under the assumptions
stated in Section 5:1. If the iterates are bounded,
then fðxk; ykÞg converges to ðf ðy	Þ; y	Þ with proba-
bility one.

This result will be used to prove the conver-

gence of the new algorithm.
6. Convergence analysis of the new algorithm

We now come to our main result.

Theorem 2. The algorithms presented in Sections
4:1 and 4:2 converge to near optimal solutions under
the assumptions made in Section 5:1 and under the
following additional assumptions:

1. The iterates Q and q are bounded.
2. A unique learning rate a is associated with each

Q-factor which is decayed in a fashion that de-
pends upon the number of times the particular
Q-factor was tried. There is also a unique learn-
ing rate b associated with the scalar q that de-
pends on the number of times q is updated.

3. There exists a state s in the Markov chain such
that for some integer m, and for all initial states
and all stationary policies, s is visited with a pos-
itive probability at least once within the first m
stages.
6.1. Proof

Convergence follows from Borkar�s lemma (in

Section 5.1.1) with some additional work. First, we

need to show that the transformations in the al-

gorithm are of the form presented in Borkar�s
lemma and that they track ODEs.

6.1.1. Relevant ODEs

The iterations in the algorithm can be shown to

relate to a set of mappings which are defined next.

Let H1 denote a mapping that transforms the

vector ðQkÞ to a new vector ðH1ðQkÞÞ as follows:

ðH1ðQkÞÞði; uÞ ¼
X
j

pði; u; jÞ gði; u; jÞ
h

� qktði; u; jÞ

þmin
v

Qkðj; vÞ
i
: ð42Þ

Now a vector ðH2ðQkÞÞ can be defined as follows:

ðH2ðQkÞÞði; uÞ ¼ gði; u; ekiuÞ
h

� qktði; u; ekiuÞ

þmin
v

Qkðekiu; vÞ
i
: ð43Þ

We define mappings F1 and F2 for SMDPs as fol-

lows:

F1ðqkÞ ¼
X
j

pði; u; jÞ½gði; u; jÞ þ T ðkÞqk=T ðk þ 1Þ;

F2ðqkÞ ¼ ½gði; u; ekiuÞ þ T ðkÞqk=T ðk þ 1Þ:

Using these transformations, the algorithm for

SMDPs ((17) and (18)) may be re-written using the

following equations:

Qkþ1ði; uÞ ¼ Qkði; uÞ þ aðmðk; i; uÞÞ½H1ðQkÞði; uÞ
� Qkði; uÞ þ wk

1ði; uÞIðði; uÞ ¼ /kÞ
ð44Þ

and

qkþ1 ¼ qk þ bðkÞ½F1ðqkÞ � qk þ wk
2; ð45Þ

where the noise term wk
1 is given by

wk
1 ¼ H2ðQkÞ � H1ðQkÞ; ð46Þ

and the noise term wk
2 is given by

wk
2 ¼ F2ðqkÞ � F1ðqkÞ: ð47Þ
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Now Eq. (44) can be written as

Qkþ1ði; uÞ ¼Qkði; uÞ þ aðmðk; i; uÞÞ½hðQkði; uÞ; qkÞ
þ wkIðði; uÞ ¼ /kÞ; ð48Þ

where hðQkÞ ¼ H1ðQkÞ � Qk. Also Eq. (45) can be

written as

qkþ1 ¼ qk þ bðkÞ½f ðqkÞ þ wk
2; ð49Þ

where f ðqkÞ ¼ F1ðqkÞ � qk. Note that the Eqs. (48)

and (49) for SMDPs form a special case of the

general class of algorithms (29) and (30) analyzed

using the lemma given in Section 5.1.1. Then the

corresponding limiting ODEs for sequences de-

fined in Eqs. (48) and (49) would be respectively

dQðtÞ
dt
¼ hðQðtÞ; qÞ ð50Þ

and

dq
dt
¼ f ðqðtÞÞ: ð51Þ

The analysis for MDPs to obtain the limiting dif-

ferential equations (50) and (51) follows from the

analysis of SMDPs by setting the terms tði; u; jÞ
and tði; u; eiuÞ to 1 in the mappings H1 and H2 and

replacing T ðkÞ by JðkÞ in the mappings F1 and F2.
We next show that the iterates Q and q are

bounded.

6.1.2. Boundedness of iterates

In the context of boundedness, it is necessary to

define one more transformation which is not used

in the algorithm directly. The transformation is

denoted by T and is defined as

ðTQÞði; uÞ ¼
Xn
j¼1

pði; u; jÞ gði; u; jÞ
h

þmin
v

Qðj; vÞ
i
:

Now T is contractive with respect to some weigh-

ted sup-norm under assumption 3 of Theorem 2

(see Remark 1 in Section 6.2). Then it can be
shown [4] that there exists a vector r, and scalars

d 2 ð0; 1Þ and D > 0, such that

kTQkr 6 dkQkr þ D;

where kskr denotes the weighted sup-norm of a

vector s with respect to the vector r and is defined
as follows:

kskr ¼ max
i¼1;...;n

jsðiÞj
rðiÞ :
Note that

ðH1QÞði; uÞ ¼ ðTQÞði; uÞ � q
X
j

pði; u; jÞtði; u; jÞ;

which implies that

jðH1QÞði;uÞj6 jðTQÞði;uÞj þ q
X
j

pði;u; jÞtði;u; jÞ
					

					:
Also it is clear that q is finite (it is the average cost

of a stationary policy of a Markov chain with fi-

nite costs and finite number of states) and so isP
j pði; u; jÞtði; u; jÞ for any value of ði; uÞ. This

ensures that for D1 > 0,

kH1Qkr 6 kTQkr þ D1:

But since kTQkr 6 dkQkr þ D, we have that

kH1Qkr � D1 6 kTQkr 6 dkQkr þ D;

which implies that

kH1Qkr 6 dkQkr þ D0;

where D0 ¼ ðDþ D1Þ > 0. Then by using a result in

[34], it is straightforward to show that H1 keeps the

iterate Q bounded. Having shown the bounded-

ness of both the Q vector and q, the stage is set to
examine the assumptions in the lemma given in

Section 5.1.1.

6.1.3. Verification of assumptions in Section 5.1

The limiting ODEs (Eqs. (50) and (51)) in this

algorithm can be related to forms given in Borkar�s
lemma (see Section 5.1.1) by observing that here Q
stands for x and q stands for y in Eqs. (29) and

(30). The assumptions for the lemma are given in

Section 5.1. The lemma also assumes that the it-

erates remain bounded which has been already

proved in the previous section. The assumptions 2
and 3 in Section 5.1 place restrictions on the

learning process. The assumption 4 on the noise

terms is satisfied because it can be seen from the

definition of the noise terms ((46) and (47)) that

the noise represents the difference between the

sample and a conditional mean. The conditional

mean of this difference tends to 0 as number of

samples tends to infinity (using Martingale con-
vergence theory [4]). The variance of this difference

has to be bounded because the costs are bounded

(and the iterates are bounded, which has been
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proved) thus satisfying the second clause in as-
sumption 4 (see [4]). The remaining assumptions

that need to be verified are assumptions 1, 5, and

6. The mapping h is indeed Lipschitz continuous

because the mapping is linear everywhere. An ex-

amination of the mapping h in Eq. (42) reveals this

fact. The transformation f is also Lipschitz con-

tinuous because of the same reason. The assump-

tion 5 may be verified as follows. For a fixed q, the
mapping H1ðQÞ which may be written as HqðQÞ is
non-expansive with respect to the sup-norm (see

Remark 5 in Section 6.2). Using a powerful result

from Borkar and Soumyanath [8] that holds for

non-expansive mappings and does not need a

contraction property, it can be shown that the

solution of the differential equation converges to

an asymptotically stable critical point. This point
will be henceforth called Qq. This point Qq (the

term corresponding to GðyÞ in the statement of

assumption 5 of Borkar�s lemma) is a function of

q, the Lipschitz continuity of which can be proved

by the fact that each component of the Q vector is

Lipschitz continuous in q [4]. The second ODE

converges to the average cost of a policy. It is clear

that as soon as The Q values stabilize, the policy
becomes stationary since it is the Q values that

dictate the policy. The average cost of a stationary

policy is Lipschitz continuous [4]. Besides, the

average cost of a given policy is a finite constant

for a stationary policy with finite costs and tran-

sition times [24]. It remains to be shown however

that the policy to which the algorithm converges is

indeed the optimal policy. This needs some more
work, that we have adapted from Gosavi [14] but

we shall present it here for the sake of complete-

ness. The work that is needed is presented via

Theorem 3. Theorem 3 completes the proof of

Theorem 2.

It is sufficient to show that the Q-factors con-

verge to their optimal values since once a policy is

learned (all the information related to the policy
can be extracted from the Q-values), the optimal

average cost can be determined by re-simulating

the system with the policy that was learned. In

other words, we do not concern ourselves with

what value q converges to.
We shall first consider the MDP case. In case of
the MDP, the Bellman transformation for value

iteration is as given in Eq. (9) which is rarely used

in practice since one of the Q values can become

very large or very small [3] and hence a relative

value-iteration method is used where the trans-

formation is as follows:

R	ðiÞ ¼ min
u2Ai

X
j2S

pði; u; jÞ½gði; u; jÞ � RðtÞ þ R	ðjÞ;

ð52Þ

where RðtÞ is the value function of some state

in the MDP. However both transformations lead

to the same policy since the values in one differ from
the corresponding values in the other by a constant

and hence their ‘‘relative values’’ are same. This is

the mechanism used to show that relative value-

iteration converges to an optimal solution and it is

sound since value iteration has been demonstrated

to be optimal. We shall use the same mechanism to

establish that the new algorithm converges to the

same relative values as value iteration.
Consider the transformation (14) that updates

the Q-factors in our algorithm. It must be under-

stood that where q to be a constant our proof

would terminate at this point because the value

function produced by such an algorithm would

differ from the value function produced by the

optimal value-iteration algorithm by a constant (in

each element) and would generate the same policy.
However, in the new algorithm, q keeps changing.

So in order to demonstrate equivalence to value

iteration, we need to show that in spite of the

changing value of q, the value function produced

by the new algorithm is identical to that produced

by a fixed q. (Of course, an important question

that arises at this point is as follows. If a constant

q can generate an optimal solution, why do we
bother to update q? After all, once the optimal Q-
factors are known, it is not difficult to obtain a

good approximation of the �optimal� value of q
using simulation. The answer to this is that from

the current estimate of the value function, one has

to subtract, in every iteration, a certain quantity

that keeps increasing with the Q-factors else one or
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more of the Q-factors can become very large or
very small (Bertsekas [3]).)

We shall next state the result that will establish

the equivalence of the transformation (14) and the

value-iteration transformation (13) for the MDP

case.

Theorem 3. The transformation (14) and transfor-
mation (13) both produce the same Q-factors.

(In other words, transformation (42) generates an

optimal solution for the MDP.)
Proof. For the proof of this theorem, we need the

following three lemmas.

Lemma 1. If rðkÞ denotes the immediate cost in-
curred in the kth update of q, the value of the scalar
q at the kth iteration ðk ¼ 0; 1; 2; . . .Þ can be given as
qk ¼ AðkÞ þ BðkÞ; ð53Þ
where

AðkÞ ¼ ð1� bð1ÞÞð1� bð2ÞÞ � � � ð1� bðk � 1ÞÞ
� ð1� bðkÞÞq0

and

BðkÞ ¼ bðkÞrðkÞ þ
Xk�1
d¼1

CðdÞ;

where

CðdÞ ¼ bðdÞrðdÞð1� bðd þ 1ÞÞ
� ð1� bðd þ 2ÞÞ � � � ð1� bðkÞÞ:
Proof. We shall use an induction argument. We
verify it for k ¼ 1. Now q in our algorithm is

generated by transformation (16). Hence

q1 ¼ ð1� bð1ÞÞq0 þ bð1Þrð1Þ. Now from Eq. (53)

we have Að1Þ ¼ ð1� bð1ÞÞq0 and BðkÞ ¼ bð1Þrð1Þ
thereby satisfying relation (53) for k ¼ 1. (Notice

that this case is not very interesting as the C terms

are 0, but the case for k ¼ 2 can also be easily

verified.) We next assume that the result is true for
k ¼ n. Hence qn ¼ AðnÞ þ BðnÞ. Now using trans-

formation (16), we have
qnþ1 ¼ ð1� bðnþ 1ÞÞqn þ bðnþ 1Þrðnþ 1Þ
¼ ð1� bðnþ 1ÞÞ½AðnÞ þ BðnÞ
þ bðnþ 1Þrðnþ 1Þ
¼ ð1� bðnþ 1ÞÞ

� ½ð1� bð1ÞÞð1� bð2ÞÞ � � � ð1� bðnÞÞq0

þ ð1� bðnþ 1ÞÞ bðnÞrðnÞ
"

þ
Xn�1
d¼1

CðdÞ
#

þ bðnþ 1Þrðnþ 1Þ ¼ Aðnþ 1Þ þ Bðnþ 1Þ:

The proof is from Gosavi [14]. �

We next show that the difference between value

of the scalar q at its ith iteration and ðiþ dÞth it-

eration is of the order of b.

Lemma 2. The difference between the value of the
iterate q at the ith iteration and that at the ðiþ dÞth
iteration is of the order of b.

Proof. Using Lemma 1, we have

qiþd � qi ¼ Aðiþ dÞ � AðiÞ þ Bðiþ dÞ � BðiÞ:
It is clear from their definitions that the B terms

are already of the order of b. We also have that

Aðiþ dÞ � AðiÞ

¼ ð1� bð1ÞÞð1� bð2ÞÞ � � � ð1� bðiþ dÞÞq0

� ð1� bð1ÞÞð1� bð2ÞÞ � � � ð1� bðiÞÞq0

’ �ðbðiþ 1Þ þ bðiþ 2Þ þ � � � þ bðiþ dÞÞq0;

where the last approximate equality is obtained

after neglecting terms of the order of b raised to 2

and higher integers. It is also clear thus that the

difference qiþd � qi is of the order of b. �

We next prove that the difference between a Q-
factor obtained from subtracting qiþd and that
obtained from subtracting qi is of the order of ab.

Lemma 3. The difference in the Q-factor obtained
from in qiþd as opposed to qi using transformation
(14) is of the order of ab.
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Proof. Suppressing some parts of the notation for

the sake of clarity, we denote by Qs the Q-factor
obtained by subtracting qs in transformation (14).

Hence the error e introduced in the Q-factor by

subtracting qiþd as opposed to qi can be written

(using some simple algebra with transformation

(14)):

e ¼ Qiþd � Qi ¼ aðqi � qiþdÞ:

Using Lemma 2, we can write e as

e ¼ OðabÞ: �

From Lemma 3, one can see that the error in-

troduced in the Q-factor by the changing value of

q is negligible (because both a and b are much

smaller than 1) and the error tends to 0 asymp-

totically as a and b tend to 0. In other words this

proves Theorem 3. �

The proof of Theorem 2 for the MDP case

follows from Theorem 3.

For the SMDP case, relative value iteration

cannot be used unless the optimal value of q is

known beforehand. For SMDPs hence, under av-

erage cost, an approximate procedure for value

iteration has been suggested (see both Bertsekas [3]

and Puterman [24]). This approximation approach
requires the knowledge of the transition proba-

bilities and hence is ruled out for RL, where the

challenge is to generate a near optimal solution

without the transition function. Under these cir-

cumstances if we must use a value-iteration

method, the best we can do is to start with a good

guess of the optimal value of q (and this is not as

difficult as it seems) since we can still obtain a
near-optimal solution. For the SMDP, our up-

dating is given by transformations (17) and (18).

The strategy that will ensure a near-optimal solu-

tion is to start with a value of q that is known to be

close to the optimal value, in Eq. (18). This will

ensure that the Bellman equation (see Theorem 1

in Section 3.1.1) is approximately satisfied by the

transformation (17). As in the MDP case, a
changing value of q will not affect the policy to

which the Q-factors will converge.
The difficulty of finding an estimate of the op-

timal cost beforehand is also encountered in other
learning paradigms such as learning automata
[16,23], which hinges on a good estimate of the

�feedback� of a given action that needs the

knowledge of the optimal cost beforehand. A

commonly used strategy is to use a fraction of the

average cost produced by some good heuristic. If

no heuristic is available, a strategy that has been

used in automata literature is to choose a ran-

domized policy (that takes each action in a given
state with equal probability) and then use a frac-

tion of the average cost of the randomized policy

as estimate of the average cost. In any case, in RL

several trials are often necessary with tuning

learning rates to obtain superior performance.

Hence if a chosen value does not work (in the sense

that it fails to outperform a known heuristic), one

has to choose a lower value (in case of average
cost) or a higher value (in case of average reward).

Empirical evidence suggests that this problem does

not cause too much trouble in practice.

6.2. Some remarks on the convergence behavior

We next make some comments on the conver-

gence proof shown above.
� Remark 1: That transformation (42) is con-

tractive is a proven result. See Appendix A.5 for a

proof.

� Remark 2: The role of exploration in any Q-
learning algorithm is to ensure that all state–action

pairs are tried. Unless all state–action pairs are

tried and good estimates of all the Q-factors are

obtained, Q-learning, which is essentially a form of
value iteration can diverge.

� Remark 3: Assumption 2 in Section 5.1 says

that every state–action pair must be tried after a

finite interval of time. A mechanism in RL that

roughly guarantees this, is function approxima-

tion. Function approximation schemes such as

neural networks or local regression (or even local

neural networks [15]) ensure with probability 1
that all states are visited after a finite time interval

and that no one state is �forgotten� for a very long

time. (The reason for this phenomenon is that

whenever a state is visited, some neighboring states

are also updated (in case of local regression/local

neural networks) or all the states in the system are

updated in case of a global state-space-wide neural
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network/regression.) This is perhaps why a func-
tion–approximation-coupled approach usually

outperforms a look-up table even when the state-

space can be managed with a look-up table [15].

� Remark 4: It is difficult to satisfy, in a naive

sense, in RL, the assumption that every Q-factor
should have its own learning rate and that it be

decayed depending on the number of visits paid to

it. This is because that would require keeping track
of the number of times every state–action pair is

tried and that would defeat the purpose of RL

since this would require too much storage in

problems with a huge state-space (unless some

compact methods are devised for storing counters

that indicate these frequencies). However, this

condition too can be roughly satisfied under a

function approximation approach where all states
are visited more or less regularly and hence one

can use the same learning rate (and consequently

same decaying scheme) for all the state–action

pairs.

� Remark 5: We next show that the mapping

(42) is non-expansive with respect to the sup-norm.

Using the map (42), it is clear that

H1Q1ði; uÞ � H1Q2ði; uÞ

¼
X
j

pði; u; jÞ min
v

Q1ðj; vÞ
h

�min
v

Q2ðj; vÞ
i
:

ð54Þ

Then we have that

jH1Q1ði; uÞ � H1Q2ði; uÞj

6

X
j

pði; u; jÞ min
v

Q1ðj; vÞ
			 �min

v
Q2ðj; vÞ

			
6

X
j

pði; u; jÞmax
v
jQ1ðj; vÞ � Q2ðj; vÞj

6 kQ1 � Q2k1;

which implies that

max
i;u
jH1Q1ði; uÞ � H1Q2ði; uÞj6 kQ1 � Q2k1;

which can be written as

kH1Q1 � H1Q2k16 kQ1 � Q2k1:
� Remark 6: The SMART algorithm [10] for

the MDP case can also be expressed with a step-
size in its updating of q. The updating in SMART
is done as follows.

Initialize k and TOTAL_COST to 0 in the be-

ginning. Perform update of q as follows:

TOTAL COST TOTAL COSTþ gði; u; jÞ

q TOTAL COST=k þ 1

It is not hard to show that this update of q is

equivalent to

q ð1� bÞqþ bgði; u; jÞ
in which b ¼ 1=ðk þ 1Þ. Using this argument, it is
possible to prove convergence of SMART in a

manner similar to that shown above. However,

there are two problems: (1) This step-size rule of

1=ðk þ 1Þ cannot be controlled (as required in

Borkar�s result) and may cause divergence. Also, it

may be difficult to ensure that b is smaller than a.
(2) The starting value of q used in SMART is 0

and this may be far away from the optimal value
of q. Since the algorithm presented in this paper

uses a relaxation scheme in its update of q, but is
otherwise similar to SMART, it was named Re-

laxed-SMART in [13].
7. Numerical results

First, we present the Robbins–Monro version

of the algorithm for SMDPs in a step by step

format, with all the implementational details.

Thereafter a description of the preventive mainte-

nance case study [11] and the numerical results on

several example problems from it are presented.

7.1. Implementational description of the algorithm

for the PM case study

The step by step details of the algorithm, for a

numerical implementation are supplied in Fig. 2.

Let S be the set of all states and AðiÞ be the set of

actions in state i. The learning rates (a and b) are
decayed to 0 as the learning progresses. The ex-

ploration probability ðpÞ also has to be suitably
decayed. Typically a decaying scheme works as

follows. If dðmÞ denotes the variable at the mth
iteration, then dðmÞ may be defined as follows:



Fig. 2. A New RL algorithm for computing average cost optimal policies for MDPs and SMDPs.
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dðmÞ ¼ M=m, where M is some pre-determined

constant (for example 0.1). Also it may be noted

here that even though the algorithm will be pre-

sented in a form to be used with the more general

SMDP, it is obvious that by setting the transition

times to one in every case, the algorithm can be

used for an MDP (which is a special case of an
SMDP) as well. The value of qs, which is the

starting value of q can be obtained from using the

renewal reward heuristic on the PM case study

[10]. In case of MDPs, qs can be 0 but in case of

SMDPs, qs should preferably be the average cost

of some heuristic. (See Section 6 for another

mechanism.)
7.2. Case study for an empirical demonstration of

the convergence of the new algorithm

We next describe the preventive maintenance

case study chosen to benchmark the new algo-

rithm. A production–inventory system is consid-

ered which produces a single product type to
satisfy an external demand process. The system is

prone to failures; the time between failures, a

random variable, is not exponentially distributed.

Hence preventive maintenance [19] is an option to

reduce the downtime of the machine. Demands

that arrive when the inventory buffer is empty

are not backordered and are, therefore, lost.
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Provision for a finished-product inventory buffer
of the product between the system and the de-

mands is kept so as to minimize the chances of

losing demand when the machine is down due to

breakdown or maintenance. The system stops

production when the buffer inventory reaches S
and the production resumes when the inventory

drops to s. During its vacation, i.e. when pro-

duction stops due to the inventory reaching its
upper limit S, the system is assumed not to age

or fail. Preventive maintenance decisions are

made only at the completion of a part produc-

tion. The problem may be set up as an SMDP

which is discussed next. An infinite supply of raw

material is assumed. When the system produces a

part, the part goes into the inventory-buffer.

When a demand arrives, the buffer is depleted by
one unit; if the buffer is empty that particular

demand goes away never to return. As the ma-

chine ages during production, it can fail. The

repair time and the production times are random

variables. During the vacations, the machine is

assumed not to age. After the end of the repair or

maintenance, the machine is assumed to be as

good as new. When the machine completes the
manufacture of one part, two options are avail-

able: (i) to produce one more part and (ii) to

schedule a maintenance. The decision needs to be

taken based on the age of the machine, a measure

of which is the number of parts produced since

last repair or maintenance (which will be denoted

by c), and the number of parts in the buffer ðwÞ.
The decision-making state-space of the system
may hence be denoted by ðw; cÞ. For more details

on the semi-Markov model, the semi-Markov

property with the chosen state-space and the

method used to obtain the optimal policies, the

reader is referred to the excellent paper written by

Das and Sarkar [11].

Comment: It needs to be emphasized here that

in the Das and Sarkar [11] paper, the assumption
that the production time and the time between

failure were both gamma distributed made it con-

siderably easy to compute the exact transition

probabilities. They were able to make use of the

property that sum of gamma is gamma. With a

gamma distributed production time and some

other distribution for the time for failure or repair,
computing the transition probabilities becomes
much more difficult. The complexity of the tran-

sition function is usually (though not always) de-

pendent on the number of random variables in the

system and how they interact. Sometimes, even

problems with a small state-space have very com-

plex transition mechanisms (this is especially true

of the SMDP) and obtaining expressions for the

transition probabilities can be quite difficult. And
it is no exaggeration to say that under general

assumptions for the distributions, computing the

transition probabilities can be very difficult for

problems even with a few hundred states such as

some of those studied in [11], where there are five

random variables involved. It should be noted that

a change in distribution can be easily accommo-

dated in a simulation model such as that in RL
and a large number of random variables do not

make the simulation model any harder to con-

struct.
7.3. Numerical results

The demand arrival process (with batch size of

1) is Poisson ðcÞ. The unit production time, ma-
chine repair time, and the time between machine

failures are gamma distributed with parameters

ðd; kÞ, ðr; dÞ, and ðk; lÞ respectively. The time for

preventive maintenance has a uniform ða; bÞ dis-
tribution. The values of the input parameters used

for numerical tests with the algorithm are shown in

Table 1. For each of the nine parameter sets

(shown in Table 1), the cost parameters considered
are denoted by Cd (net revenue per demand ser-

viced), Cr (cost per repair), and Cm (cost per

maintenance). In the experiments performed, S is

assumed to be 3 and s is assumed to be 2. The

optimal results (average cost) for the single prod-

uct inventory system obtained numerically from

the theoretical model and the RL algorithm are

summarized in Table 2. Results show that the RL
algorithm performs extremely well. A statistical

test comparing two means: the average cost ob-

tained from the policy generated by the RL algo-

rithm and that obtained from the optimal policy

[11] reveals no significant difference at a 95%

confidence level.



Table 1

Input parameters for nine sample numerical examples

System Time between de-

mands ðcÞ
Time between failure

ðj;lÞ
Time between production

ðd; kÞ
Maintenance time

ða; bÞ
Repair time

ðr; dÞ
1 1/10 (8, 0.08) (8, 0.8) (5, 20) (2, 0.01)

2 1/10 (8, 0.008) (8, 0.8) (5, 20) (2, 0.01)

3 1/7 (8, 0.08) (8, 0.8) (5, 20) (2, 0.01)

4 1/15 (8, 0.08) (8, 0.8) (5, 20) (2, 0.01)

5 1/15 (8, 0.08) (8, 0.8) (25, 40) (2, 0.01)

6 1/15 (8, 0.08) (8, 0.8) (5, 20) (2, 0.02)

7 1/15 (8, 0.08) (8, 0.8) (5, 20) (4, 0.02)

8 1/15 (8, 0.01) (8, 0.8) (5, 20) (4, 0.02)

9 1/20 (8, 0.04) (8, 0.4) (5, 20) (4, 0.02)

Table 2

Results from new algorithm which were averaged over 40 runs,

where each simulation run lasted for 5.0 million time units

System Optimal average cost

($ per unit time)

RL average cost

mean� 3 (std. dev.)

Cd ¼ 1; Cr ¼ 5; Cm ¼ 2

1 )0.034 �0:034� 9:72� 10�4

2 )0.076 �0:075� 5:97� 10�4

3 )0.035 �0:035� 9:05� 10�4

4 )0.028 �0:028� 6:58� 10�4

5 )0.025 �0:025� 6:54� 10�4

6 )0.031 �0:03� 6:22� 10�4

7 )0.028 �0:028� 7:85� 10�4

8 )0.057 �0:057� 5:16� 10�4

9 )0.020 �0:020� 5:4� 10�4

A. Gosavi / European Journal of Operational Research 155 (2004) 654–674 671
8. Other average cost RL algorithms

There are a number of other RL algorithms that

have been proposed in the literature. SMART was

discussed above. We would like to discuss R-
learning [26], which was the first average cost RL

algorithm to have appeared in the literature, and

the contracting Q-learning algorithm of Abounadi,

Bertsekas and Borkar [1], which was the first

convergent average cost RL algorithm to have

appeared in the literature. These algorithms were

designed for MDPs and hence we shall discuss

them in that context.
R-Learning. Refer to Fig. 2. Use tði; u; jÞ ¼ 1 for

all values of i, j and u in step 4. Step 5 in R-learning

q ð1� bÞqþ b gði; u; jÞ
�

þ min
v2AðjÞ

Qðj; vÞ

� min
w2AðiÞ

Qði;wÞ

:

Other steps of the algorithm are as in Fig. 2.
Contracting Q-learning. Again, refer to Fig. 2
and use tði; u; jÞ ¼ 1 for all i, u and j. Step 4 would

be replaced by

Qði; uÞ  ð1� aÞQði; uÞ þ a gði; u; jÞ
�

� q

þ min
v2AðjÞ

bQðj; vÞ
where bQðj; vÞ ¼ Qðj; vÞ, if i 6¼ j, and bQðj; vÞ ¼ 0

otherwise. Step 5 would be

q qþ b min
v2Aðs	Þ

Qðs	; vÞ

where s	 is a special state that is selected in the
beginning of the algorithm. The special state could

be any state in the system, but cannot be changed

once selected. This contracting Q-learning algo-

rithm has the flavor of the relative value iteration

algorithm.
9. Conclusions

RL is a relatively new field that developed in the

mid-1990s even though the theory of DP for solv-

ing MDPs is very old. The emergence of RL based

algorithms has given the field of stochastic DP the

power it did not have previously. Only very re-

cently have commercial applications of RL started

appearing. The theory of average cost RL is con-
siderably harder than that of discounted RL and a

lot of fundamental work remains to be done in this

area. Model-free average cost RL algorithms can

be classified into two categories: (i) algorithms

based on relative value iteration and (ii) algorithms
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based on Bellman equation. Three algo-
rithms based on relative value iteration have been

proposed, the first that appeared in literature R-
learning, and the other two were proposed in Singh

[30] and [1]. In the second category, at present there

are two algorithms: SMART [10] and the new al-

gorithm (presented in this paper). Some of the

work presented here comes from a dissertation [13].

Some of the open research issues are envisioned as
follows: (i) study of MDPs and SMDPs under the

finite horizon in ARL, (ii) development of an RL

algorithm using Sennott�s approximating sequence

method [28], and (iii) application of the new algo-

rithm to difficult large-sized problems such as the

SELSP using the SMDP model.
Appendix A

A.1. Sup-norm of a vector

The sup-norm or max-norm of a vector x, is
defined as kxk1 ¼ maxi jxij, where jxij denotes the
absolute value of the vector�s ith component.

A.2. Lipschitz continuity

A function f ðxÞ is said to be Lipschitz contin-

uous in x 2 Rn if there exists a finite value for L
that satisfies

kf ðx2Þ � f ðx1Þk6 Lkx2 � x1k
for any x1 and x2 in Rn and k:k denotes a norm.

A.3. Critical point and asymptotically stable critical

point of an ODE

Consider the differential equation ðdx=dtÞ ¼
f ðx; tÞ.

Definition 1. The critical point (or equilibrium

point) is defined as the vector x	 that such that

f ðx	; tÞ ¼ 0 in the differential equation given

above.

Definition 2. Let x	 be the critical point of the

ODE. Let Bðx	;RÞ be the ball (open sphere) of

radius R centered around x	. Then x	 is said to be
an asymptotically stable critical point if and only if

for all values of � > 0, there exists a scalar quantity

R� > 0 such that if xð0Þ 2 Bðx	;R�Þ, then

xðtÞ 2 Bðx	; �Þ for all t, and limt!1 xðtÞ ¼ x	.

A.4. Standard step-size conditions

Let aðkÞ be the step-size at the kth iteration. The
standard conditions for convergence that aðkÞ
must satisfy are as follows: (i)

P1
k¼0 aðkÞ ¼ 1, (ii)

aðk þ 1Þ6 aðkÞ for k large enough, (iii) there exists

r 2 ð0; 1Þ such that for all qP r,
P1

k¼0 a
1þqðkÞ <

1, and (iv) let AðmÞ ¼
Pm

k¼0 aðkÞ then for all

r 2 ð0; 1Þ, supk ðað½rkÞ=aðkÞÞ <1, and the fol-

lowing holds uniformly in y 2 ½r; 1Þ for all

r 2 ð0; 1Þ, limk!1 ðAð½ykÞ=AðkÞÞ ¼ 1. A step-size
that satisfies all of the above conditions is f1=kg.

A.5. Contraction property of transformation H1

(42)

Consider the transformation in Eq. (42) for a

Markov chain under assumption 3 of Theorem 2.
There exists a vector n such that mapping H1 is a

contraction mapping with respected to a weighted

sup-norm k:kn.
Comment: It must be emphasized that the result

we are about to present holds for the SMDP in

which we use the transformation H1 (42) and that

we are not concerned with whether it holds for the

fictitious shortest stochastic path problem that will
be invoked subsequently. A shortest stochastic

path problem is invoked only for the sake of es-

tablishing a relation for the transition probabilities

of our SMDP––a relation that can be used to

prove the result. The proof is due to Littman [22]

and was also independently discovered by Bertse-

kas and Tsitsiklis [4, p. 23, Proposition 2.2]. Even

though the proof has been quoted in the shortest
stochastic path context in [4], it has been used

elsewhere because it pertains to the mapping.

Proof. We first consider a new, fictitious shortest

stochastic path problem, whose transition proba-

bilities are identical to the SMDP under consid-

eration, but all the immediate transition costs are

)1 and the immediate transition times are 1.
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Then we have that for all i ¼ 1; 2; . . . ; n and
stationary policies l,

Dði; uÞ ¼ �1þ min
v2UðjÞ

X
j

pði; u; jÞDðj; vÞ

6 � 1þ
X
j

pði; lðiÞ; jÞDðj; lðjÞÞ; ðA:1Þ

where Dði; uÞ is the Q-factor for the state–action

pair ði; uÞ. We shall make our notation a little more

compact by replacing ði; uÞ by k and ðj; lðjÞÞ by l,
where k and l denote the state–action pairs and

take values in 1; 2; 3; . . . ;N . Thus Dði; uÞ will be
replaced by DðkÞ. Let us now define a vector n as

follows 8k:

nðkÞ ¼ �DðkÞ:

Then for all k, we have from the definition of DðkÞ
above (Eq. (A.1)), DðkÞ6 � 1, which implies that

nðkÞP 1 for k ¼ 1; 2; 3; . . . ;N . For all stationary
policies l, we then have from (A.1) that for all k,X
j

pði; lðiÞ; jÞnðlÞ6 nðkÞ � 6 fnðkÞ; ðA:2Þ

where f is defined by

f ¼ max
k¼1;2;...;N

nðkÞ � 1

nðkÞ < 1; ðA:3Þ

where the last inequality follows from the fact that

nðkÞP 1. Thus we haveX
j

pði; lðiÞ; jÞnðlÞ6 fnðkÞ; ðA:4Þ

which is true of the transition probabilities of the

SMDP. We now turn our attention to the SMDP
in question. From transformation H1 in Eq. (42),

we can write

H1Q1ði; uÞ � H1Q2ði; uÞ
¼
X
j

pði; u; jÞ½min
v

Q1ðj; vÞ �min
v

Q2ðj; vÞ:

ðA:5Þ

Using our compact notation, we can write the

above as

H1Q1ðkÞ � H1Q2ðkÞ
¼
X
j

pði; u; jÞ½min
l

Q1ðlÞ �min
l

Q2ðlÞ: ðA:6Þ
Then we have that

jH1Q1ðkÞ �H1Q2ðkÞj

6

X
j

pði;u; jÞjmin
l

Q1ðlÞ �min
l

Q2ðlÞj

6

X
j

pði;u; jÞmax
l
jQ1ðlÞ �Q2ðlÞj

¼
X
j

pði;u; jÞnðlÞkQ1�Q2kn 6 fnðkÞkQ1�Q2kn;

where we define the weighted max norm of X ðkÞ
with respect to n as

kXkn ¼ max
k

jX ðkÞj
nðkÞ :

From the above, we can write

jH1Q1ðkÞ � H1Q2ðkÞj
nðkÞ 6 fkQ1 � Q2kn:

Since the above holds for all values of k, it also
holds for the value of k, for which its left-hand side

is maximized. In other words, we have that

kH1Q1 � H1Q2kn 6 fkQ1 � Q2kn;

which proves the result. �
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