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Electronics•	  industry: Intel (Kanellos, 1998) and Hewlett-
Packard (Waller et al., 1999),
Food•	  manufacturing: Kraft Inc. and Mott’s USA (Emigh, 
1999),
Petrochemical•	 : Shell Chemical (Hibbard, 1998)
Men’s•	  undergarments: Fruit of the Loom (Cetinkaya and Lee, 
2000).  

The use of VMI at Wal-Mart on a large scale has attracted a 
great deal of attention in the industrial world.

In a VMI program, the supplier assumes control of the 
inventory management for one or more retailers (Fry, 2002). The 
supplier monitors the inventory level at the retailers and makes the 
decisions related to the quantities of replenishment and the timing 
of shipments to the retailers. It has been claimed that this can 
play a significant role in reducing the bull-whip effect. Compared 
to traditional retailer-managed inventory (RMI) programs in 
which retailers are responsible for placing orders and are entirely 
responsible for their own inventory shortages or excesses, VMI 
can bring benefits to both retailers and manufacturer, as discussed 
next. Some of the advantages for the retailer are as follows:

Increase	 in	 the	 service	 level:	•	 As the supplier has access to 
databases at the retailer and to the current demand at the 
retailer, the supplier can better coordinate its own activities 
of supplying materials to its various customers. As a result, 
the out-of-stock situation is rarely encountered at the retailer, 
improving its service levels.
Reduction	 of	 inventory	 levels:•	  Since the supplier has access 
to inventory databases at the retailer, the supplier is able 
to coordinate replenishment decisions in a way that keeps 
inventory levels at the retailer from being excessive. This 
leads to reduced holding costs and increased inventory turns 
at the retailer.
Reduction	 of	 ordering	 and	 planning	 costs:•	  Ordering and 
planning costs are eliminated (or reduced) for the retailer 
since the responsibility of ordering/planning is shifted to  
the supplier. 

From the supplier’s perspective, the advantages are: 
Ease	in	coordination	of	supply	process:•	  Since the supplier has 
access to the retailer’s inventory database, as well as its recent 
sales transactions, the supplier can more easily coordinate 
its own activities of supplying goods to various retailers. In 
particular, it is not overloaded by orders at the beginning of 
the week or month as is the case in RMI. Often in RMI the 
supplier simply cannot meet all the demand since orders 
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Abstract:  In a Vendor-Managed Inventory (VMI) system, 
the supplier makes decisions of inventory management for the 
retailer; the retailer is not	responsible for placing orders. There 
is a dearth of optimization models for replenishment strategies 
for VMI systems, and the industry relies on well-understood, 
but simple models, e.g., the newsvendor rule. In this article, 
we propose a methodology based on reinforcement learning, 
which is rooted in the Bellman equation, to determine a 
replenishment policy in a VMI system with consignment 
inventory. We also propose rules based on the newsvendor 
rule. Our numerical results show that our approach can 
outperform the newsvendor. 
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In the past two decades, interest in supply chain management 
(SCM) has grown rapidly because of the increasing 
competition in today’s global markets. The introduction 

of products with shortening life cycles and the heightened 
expectations of customers have forced businesses to invest in 
and focus attention on their supply chain. A driving force behind 
effective SCM is the effective collaboration of the numerous 
activities involved. A lack of coordination in the associated 
activities in general results in the well-known bullwhip effect, 
and more specifically in low service levels, high inventory, and 
high transportation costs. To overcome these problems, many 
forms of supply chain coordination, such as vendor-managed 
inventory (VMI) and continuous replenishment and collaborative 
forecasting, planning, and replenishment (CPFR), have been 
implemented in recent years in supply chain software. Known as 
direct replenishment or supplier managed inventory in the early 
days, VMI was popularized in the late 1980s and is now widely 
used in various industries. According to a 2003 technology 
survey (Automotive Warehouse Distributors Association, 2003), 
over 60% of manufacturers in the U.S. have implemented VMI. A 
survey of electronic components (Survey, 2003) and a survey of 
the grocery industry (Kurt Salmon Associates, 2002) also support 
the contention for a broad use of VMI. VMI has been widely used 
in the following industries:

Grocery•	 : Campbell Soup Company (Clark and McKenny, 
1994), and Barilla SpA (Hammond, 1994), 
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from different retailers tend to come at the same time. As a 
result, the supplier can increase its own profits.
Reduced	 transporters•	 : Ideally, since the supplier can better 
coordinate its activities, it can do with fewer trucks or, at 
the very least, it can reduce the number of trips in which 
the truck load is not full; a trip with “less-than-truckload” 
shipments are relatively expensive. 

In a consignment-inventory VMI system, the supplier retains 
ownership of the inventory at the retailer. Until the item is sold at 
the retailer, payment is not made to the supplier, so the inventory-
holding costs are absorbed by the supplier. In this article, we 
present a model for VMI systems with consignment inventory. 
Our optimization model will be built from the perspective of 
the supplier, but VMI systems have significant benefits for both 
suppliers and retailers. 

The sudden shift in responsibility of managing retailers’ 
inventory and dealing with the associated risks is “like jumping 
into a cold pool early in the morning” (Betts, 1994). Betts also 
quotes a vice president at a Cleveland firm as saying, “…if the 
scheme does not change the production process or squeeze out 
excess costs and inventory, then VMI has really just shifted 
costs to the vendor.” In addition, VMI sometimes involves 
high transportation costs, since the supplier has to ship more 
frequently to achieve inventory-turn targets at the retailers 
(Copacino, 1993). These issues make it quite challenging for 
the supplier to operate a VMI program. Some of the important 
questions that arise are: How much should one replenish, i.e., 
what should the replenishment quantities be? If trucks are used 
as transporters, how many truckloads should be dispatched in 
a given day? 

This article develops models that address these questions. 
Poor decision-making on these problems can prevent the supplier 
from enjoying the benefits of VMI. Some MRP programs, such as 
SAP and I2, have addressed this issue in designing their software; 
however, the algorithms used are not always transparent to the 
user, so it is unclear how appropriate these solutions are. 

The literature on solving supply-demand problems is 
extensive. Versions of the problem we consider have been 
studied since Veinott (1965) and Evans (1967), where the focus 
was on developing optimal strategies for inventory allocation 
in multiple retailer scenarios. More recently, Higginson and 
Bookbinder (1995) used a Markov decision process in their 
model for shipment consolidation. Van Roy et al. (1997) also 
developed a model based on Markov decision processes and 
use neuro-dynamic programming for solution purposes. Their 
model assumed identical retailers, no transportation costs, and 
fixed (non-random) transportation time, which allowed them 
to use a Markov decision process. DeCroix and Arreola-Risa 
(1998) have characterized an optimal policy for production and 
inventory control under a finite resource and have also developed 
a heuristic for solving the problem studied. Cetinkaya and Lee 
(2000) present a model based on renewal (reward) theory in 
which the timing of the shipment is determined along with its 
quantity. Axsater (2001) provided a simple procedure and an exact 
optimization procedure for the model.  Chaouch (2001) developed 
a VMI model with demand consisting of two components: one 
deterministic and one random. Their result showed that for a 
fixed delivery rate, the order-up-to level can be determined much 
like the optimal stock level in the newsvendor model. Fry et al. 
(2001) built an interesting model for a type of VMI agreement, 
called the (z,	Z) contract, based on their analysis of a number of 

VMI systems in practice, and developed a solution that satisfied 
a “newsvendor–type” relationship. Cheung and Lee (2002) built 
a model of coordinated shipment and stock rebalancing in the 
VMI system and examined the benefits of two initiatives to the 
supplier and the retailers. Bernstein and Federgruen (2003) 
considered a “centralized” system, which is similar to a VMI 
system, in which the supplier determines sales quantities and the 
complete chain-wide replenishment strategy. They considered 
a problem in which the pricing of the product is an additional 
decision variable for the retailer. Subramaniam and Gosavi (2007) 
developed a simulation-based optimization approach based on 
simultaneous perturbation to optimize the inventory dispatching 
policies; however, the policies they obtained are static and  do not 
depend on the dynamically changing state of the inventory levels 
at the retailers. 

Contributions of this Article
This research is focused on determining the replenishment 
quantities and the number of trucks dispatched by the vendor 
to each retailer, assuming that truck routes are fixed and known. 
We make many assumptions that real-world systems share. In 
particular, we consider multiple non-identical retailers with 
non-zero transportation times between retailers and the vendor 
and assume the transportation times to be random variables. 
Transportation costs are also assumed to be non-negligible. We 
believe transportation costs should be an important part of any 
VMI model, since transport frequency can be quite high in a VMI 
setting. Our solution methodology is based on reinforcement 
learning (RL), which is an approximate dynamic programming 
method rooted in the Bellman equation for the semi-Markov 
decision process. To show the usefulness of our methodology, we 
conduct a series of numerical tests. In any reinforcement learning 
based application, unless there is a way to determine the optimal 
solution, it is customary to compare the solution’s performance to 
that of some other well-accepted approach, i.e., benchmark. This 
is because RL requires a great deal of tuning and experimentation, 
and its behavior can be highly unpredictable; therefore, without 
such a comparison, one is usually unsure of the quality of the 
solution. We use the newsvendor model as the benchmark. 
Our numerical results show that our method outperforms the 
newsvendor model.  

The choice of the newsvendor as a benchmark is natural 
here for at least three reasons. First, the newsvendor rule 
elegantly captures the tradeoff between under-stocking (penalty) 
and over-stocking (holding) costs in a single-period periodic 
review setting, to which class our problem belongs. Second, 
the newsvendor model can be easily used by any engineering 
manager within spreadsheet-based software. The usefulness of 
new methods is usually best shown via comparisons to methods 
that can be easily implemented in practice, because favorable 
comparisons are likely to increase their practical appeal. Also, 
although the newsvendor rule was proposed a long time ago, its 
variants continue to be used in supply chain software today. The 
newsvendor, like the Economic Order Quantity (EOQ), is a well-
understood, transparent model that is also quite versatile and can 
be adapted easily to a large number of periodic-review settings 
in supply chains. Finally, the recent work of Suo et al. (2004) 
and Wong et al. (2008) in VMI systems is reflective of the fact 
that the newsvendor continues to be a baseline VMI model for 
academic research, while the solution in Fry et al. (2001) exploits 
a newsvendor-type relation for setting the upper and lower limits 
of their contract.  
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Most of the existing analytical models in the literature are 
developed under a specific set of system assumptions that deviate 
from ours. The model in Bernstein and Federgruen (2003) 
considers a pricing-cum-replenishment problem in a game-
theoretic setting in which they extensively use the EOQ formula. 
The model in Fry et al. (2001) does not consider transportation 
costs, and is developed for a single-product single-retailer 
combination. Further, theirs is not a consignment VMI system, 
unlike ours, and their holding costs at the supplier and the retailer 
are modeled separately. Hence, under the assumptions that we 
make, comparison of these models to our simulation-based 
methodology is not feasible.  

Problem Description
In this article, we focus on a two-echelon system with one 
Distribution Center (DC) and the retailers that the DC serves 
(see Exhibit 1). We will assume that the route followed by 
the truck (or fleet of trucks) is already known, and we make 
no attempt to optimize it. The supplier pays the holding cost 
of the inventory at the retailers (in a consignment inventory 
VMI system). Whenever a stock-out occurs at the retailer, the 
supplier is penalized. The manufacturer has to decide upon the 
timing and quantity of the order from the manufacturer to the 
DC, which we assume is done via a (Q,	R) policy. The review of 
the inventory at the retailers is performed when the truck fleet 
comes back from the retailers to the DC, and the new decision is 
to be made regarding the number of trucks to be sent in the next 
period. We refer to the period between two successive inventory 
reviews as a cycle.  

Exhibit 1. The 2-Echeleon System Considered in this Article
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Retailer 

Retailer 
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Customer 
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In one cycle, the following events occur: Customer demand 
arrives at the retailers. We model this via a compound Poisson 
process. The retailer’s demand forecast update refers to whether 
the demand has been predicted to be high or low at the retailer. 
The demand forecast for retailer i	 is denoted by I(i), and the 
n-tuple I	collectively denotes the demand forecast at all retailers. 
The retailers’ current inventory levels are denoted by the n-tuple 
x, with x(i)	denoting the inventory at the ith retailer. Similarly, 
the DC’s inventory level is denoted by another n-tuple y. After 
the products are loaded onto the trucks, the truck fleet departs 
from the DC. The majority of the literature assumes that the 
distribution of the demand at the retailers is either normal 
(Gavirneri et al., 1999; Jackson, 1988) or Poisson with a demand 
of size always equaling 1 (Cetinkaya and Lee, 2000; Deuermeyer 
and Schwarz, 1981; Graves, 1996). In this work, we assume the 
customer demand to be a compound Poisson process, where the 
demand size is assumed to have the discrete uniform distribution. 
Our use of this distribution is motivated by the fact that the 
compound Poisson process is more general than a Poisson process 

with demand size equaling 1. Also, the normal distribution is not 
easily usable in a low demand scenarios because it can become 
negative (Nahmias and Smith, 1993). In addition, we assume 
that the demand is signaled as either “high” or “low,” where a 
high demand is characterized by a higher arrival rate and a low 
demand by a lower arrival rate. With this we have attempted to 
capture a modern trend in modeling demand in supply chains 
called forecast updating (Sethi et al., 2001). Forecast updating is a 
broader concept and requires updating of the entire forecast and 
perhaps even the demand distributions on the basis of signals 
received about the state of the demand. The customer’s demand, 
D, at any retailer for a given product in one cycle,	can be modeled 
as:

 1

N

i
i

D d
=

=∑  where

d•	 i denotes the demand from the ith customer, which has a 
discrete uniform distribution.
N•	  is a Poisson distributed random variable with parameter	λ;	
essentially N stands for the number customers that arrive in 
one cycle, and the value of λ depends on i,	the retailer. 

Some additional notation that we need is:
c•	 T: the transportation cost is the cost of operating one truck 
for unit time. 
h•	 r: the holding cost of one item for unit time at a given 
retailer
p•	 r: the cost of stock-out penalty at a given retailer. 
Rev:	•	 the revenue generated for the supplier when the sale of 
a product takes place at the retailer. 
Cap•	 :	the capacity of one truck.
t•	 DC-RET: the time of travel between DC and a retailer.
t•	 RET-RET: the time of travel between retailers.
 •	 tRET: the service time at the retailer.
 •	 tDC: the service time at the DC.
t•	 0: the lead time for the DC’s order from the manufacturer.

One of the other decisions to be made at the DC, which 
our RL approach does not seek to optimize, is its own inventory 
management policy. We will assume that it uses a (Q,	R) policy 
(Askin and Goldberg, 2003). When such a policy is pursued, the 
inventory level is observed continuously. As soon as it becomes 
less than R, an order of size Q is delivered from the manufacturer 
to the DC. There are a number of algorithms to find the optimal 
values of Q and R (Askin and Goldberg, 2002). We let to	denote 
the lead time for the DC’s order from the manufacturer.  

At the start of each cycle, the inventory level of the retailers, 
x the inventory level of the DC, y, and the demand forecast of the 
retailers, I , are observed. Then the decision to be made is related 
to (i) the number of trucks to be sent and (ii) the allocation of 
the amounts of each product to the total amount within each 
truck. Sub-optimal decisions can either lead to excessive holding 
costs or stock-out costs at the retailers. Indeed, it can also lead 
to excessive holding costs for one product and stock-out costs 
for some other product. We will discuss our RL approach in the 
next section. We now describe a robust approach based on a well-
known paradigm. 

Newsvendor Solution
One approach to solving this problem is to use the newsboy or 
newsvendor rule. The newsvendor rule is designed for perishable 
items that have a holding cost and a stock-out cost. In order to 
adapt the model to our problem setting, we need some additional 
work that we now present. 

⃗
⃗

⃗

⃗ ⃗
⃗
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The value of the retailer’s order up-to level S* is determined in 
the newsvendor model by solving:

( *) pF S
p h

=
+

where p is the penalty cost, h	is the holding cost, and F(.) is 
the cumulative distribution function of the customer demand in 
the cycle. Let T	denote our cycle time and L denote the lead time 
for the retailer in question (see Exhibit 2). L is equal to the truck 
fleet transportation time from the DC to the retailer in question. 
Hence, the inventory replenishment decision made at the start of 
the current cycle will affect the inventory system from the time 
the current cycle starts until the truck fleet arrives at the retailer 
in the next cycle. In our setting, the customer demand is assumed 
to be a compound Poisson process with a demand forecast update 
and is defined by:

1

N

i
i

D d
=

=∑
where di, the amount of demand for ith customer, has a discrete 
uniform distribution, (U(a,	 b)).	 In the current cycle, the value 
of the demand forecast update (I)	is known and will be denoted 
by g. So in unit time, the mean μcurrent and variance σ2current of the 
customer demand can be given as (Ross, 2002):
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Now if we assume T to be a discrete random variable, the 
mean μcycle and the variance σ2cycle of the demand during T time 
units can be computed (Nahmias, 2001) as:

2 2 2 2
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cycle current T

cycle T current current T

µ µ µ

σ µ σ µ σ

= ⋅

= +

where μT	and σ2T are the mean and the variance of T. During 
L time units in the next cycle, the value of the demand forecast 
update I is unknown; therefore we use the expected value of I, 
E(I), to estimate it. In unit time of the next cycle, the mean μnext 

and variance σ2next of the customer demand can be computed as 
follows:
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Again, assuming that L is a discrete random variable, the 
mean μlead and the variance σ2lead of the demand experienced 
during L time units in the next cycle can be computed as:

2 2 2 2

,

,
lead next L

lead L next next L

µ µ µ

σ µ σ µ σ

= ⋅

= +
where μL	and σ2L are the mean and the variance of L respectively. 
Then, via the central limit theorem, the customer demand in the 
replenishment cycle (T) and lead time	(L) can be approximated 
(Ross, 2002) as:

2 2 2

,

.
cycle lead

cycle lead

µ µ µ

σ σ σ

= +

= +

If the demand is normally distributed with mean μ and 
variance σ2, the optimal order up-to level (S*) is:

1* ( )pS
p h

φ σ µ−= ⋅ +
+ ,

where 1(.)φ −  is the inverse of the cumulative distribution 
function of the standard normal distribution.  Let S*(i,k)	denote 
the order up-to level of retailer	 i	 and product k based on the 
newsvendor heuristic.		From these values, one can determine the 
number of trucks to be sent as follows: 

where          denotes the nearest integer of the quantity inside 
the brackets and xik denotes the current inventory for retailer i 
and product k. 

Exhibit 2.  Lead Time and Cycle Time
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Cost Structure
We summarize our cost economics model used in our simulation 
model. We have four elements for the costs and revenues: the 
holding cost (hr) at the retailers for each product (note that this 
cost is absorbed by the supplier in our model), the revenues 
(Rev) transmitted to the supplier when a sale occurs, the stock-
out penalty (pr) which is transmitted to the supplier, and the 
transportation cost (cT) per truck per unit time for the supplier.  

Solution Methodology
The problem that we have presented above can also be solved via 
a more detailed model that looks at the Markov chains underlying 
the VMI system. In this section, we first present the underlying 
stochastic process that we have used for developing the model 
and then discuss the method used for solution. 

Semi-Markov Decision Process
The stochastic process that we use in our model is called the semi-
Markov decision process (SMDP) (Bertsekas, 1995). The SMDP is 
characterized by a set of states, actions, rewards, transition times, 
and transition probabilities. In each decision-making state, the 
agent can choose from a set of actions. The random trajectory 
followed by the system depends on the action chosen in each state 
and upon the random variables that govern the system’s behavior. 
Underlying the semi-Markov process is an embedded Markov 
chain. Let p(i,a,j) denote the transition	probability	of transitioning 
from state i to state j	under the influence of action	a	in the Markov 
chain associated to action	 a.	 Similarly, let r(i,a,j)	 denote the 
immediate reward (revenue) earned in the same transition. Then, 
the expected immediate reward earned in state i by selecting 
action a	is:                                                  In an SMDP model, the time 
of transition from one state to the next is also a random variable 
with an arbitrary distribution. So if t(i,a,j) denotes the mean time 
in transiting from state i	to state j	under a, the mean time in any 
transition out of i	under a is given by 
 

Typically, when we study the system over an infinite time 
horizon, the objective function is to maximize a cumulative 
function of the immediate rewards (or costs) earned in each 
state transition. Two performance metrics frequently used 
in stochastic control theory are: the average	 reward, which 
is the expected reward per unit time calculated over an 
infinitely long trajectory, and the discounted	 reward, which 
is the expected total discounted reward calculated over an 
infinitely long trajectory. Solving the SMDP with respect to the 
discounted reward metric requires solution of the following  
Bellman equation: 

       ,

where Fia(t) denotes the cumulative distribution function of the 
time spent in transition out of i	under a,     denotes the discount 
rate (with                  being the discount factor during a time interval 
of length t),  A(i) denotes the set of actions allowed in state i, and 
J(i) denotes the value function for state i.  The solution to the 
SMDP can be expressed as a policy π, which prescribes π	(i) as the 
action to be taken in state i.  

We now consider the average reward performance metric. 
If the starting state for the system is s, the average reward 
(performance criterion) of a given policy π can be defined as:

where E denotes the expectation operator and	im denotes the state 
in the mth jump of the embedded Markov chain associated with 
policy π. It can be shown that if the Markov chain associated 
with every policy is “regular,” then the above criterion does not 
depend on the starting state. Our goal in average-reward SMDPs 
is to maximize the above function, which is also called the long-
run average reward of the SMDP. As                 , which implies that                   
            from the Bellman equation for discounted reward, 
it can be shown that optimization with respect to discounting 
becomes equivalent to optimizing with respect to the average-
reward criterion. Use of such a small value of     , so that the discount 
factor tends to 1, is called a vanishing-discount approach. In this 
article, we will use a discounting algorithm, but via the vanishing 
discount approach will solve an average-reward problem. 

SMDPs can be solved by via classical dynamic programming 
method (Bertsekas, 1995), provided the number of states is small 
and the system has a tractable transition probability model; however, 
for a problem with a large number of states, which is true of the 
problem considered in this article, it generally becomes difficult to 
store all the transition probabilities, p(.,.,.), and the elements of the 
value function, J(.). This is attributed to the curse of dimensionality 
(Bellman, 1957). If the transition probabilities are too difficult to 
find in an exact manner because of the complex stochastics of 
the underlying random process, the analysis is said to have the 
curse of modeling (Sutton and Barto, 1998); this may be true even 
of problems with a few states. One approach to avoid these twin 
curses of dynamic programming is to use the methodology called 
reinforcement learning (RL), which we next describe. 

Reinforcement Learning (RL)
RL has attracted a considerable amount of attention recently (see 
Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996; Gosavi, 
2003) for textbooks on this topic). Watkins (1989) discovered 
the Q-Learning algorithm, which is one of the most popular 
algorithms in RL, to solve the MDP in a simulator. It was 
extended to the SMDP in Bradtke and Duff (1995) where they 
used a continuous reward rate. We use the algorithm proposed 
in Gosavi (2003) for the lumpsum reward that is applicable to the 
problem here. The algorithm’s convergence has been established 
in Gosavi (2007). The algorithm is described next.  

Steps in the Q-Learning Algorithm
Step	I. Let S denote the set of states, and A(i) denote the set of 
actions allowed in state i. Initialize the Q-factors, Q(i,u) = 0 for 
all i	Є	S	and all u	Є	A(i).  Set m=0 and γ to a very small positive 
number, e.g., 0.001. Compute the step-size using a rule such as α 
= A/(B+m), where A and B are constants, e.g., A=	99 and B=100. 
Set MAX_STEPS to a large positive integer, e.g., 10,000. Start 
system simulation.

Step	II. While m < MAX_STEPS do:
Let the system start in state i.

With probability of 1/1. |A(i)| (note that |X| denotes the 
number of elements in set X), choose an action a	Є	A(i) that 
maximizes Q(i,a). (In other words, compare all the Q-factors 
for state i, and choose the action for which the Q-factor is 
the maximum). 
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Simulate the chosen action 2. a. Let the system state at the next 
decision epoch be j.
Update 3. Q(i,a) using the following rule: 
 

Set the current state 4. i	to the new state j. Increment m	by 1, 
re-compute α, and then go to Step II(1	).

When the algorithm has run for MAX_STEPS, we can 
identify the policy π returned from the Q-factors as follows. For 
all i	Є	S,	                 .  

It is to be noted that the algorithm given above does not 
need the transition probabilities of the underlying Markov 
chains, but can be used within a simulator. Thus the algorithm 
avoids the curse of modeling. Dynamic programming algorithms 
require these transition probabilities, which are notoriously hard 
to compute in a real-world problem such as the one we study 
here; however, the problem of having to store a large number of 
Q-factors remains. This issue is resolved with the use of function 
approximation that we next describe.

Function Approximation
The idea underlying function approximation is to model the 
Q-factors for a given action as a function of the state, and 
store only the relatively smaller number of scalars that define 
a function instead of storing all the Q-factors explicitly. This is 
said to avoid the curse of dimensionality. Of course, the function 
that we store should be an appropriate one. In other words, the 
function should return a reasonably accurate estimate of the 
Q-factor’s value when the relevant state and action are fed into 
it. For instance for a 2-action problem, consider the following 
linear representation (where the state is a scalar): Q(i,a)	=	Ω	+	
κi for a	=1 and Q(i,a)=ψ	+	ωi	for a=2, where i denotes the state. 
Then instead of storing the Q-factors for all state-action pairs, we 
can do with storing only 4 scalars: Ω, ω, κ, and ψ. This strategy 
works well if the Q-factors are linear or nearly linear functions. 

In most complex problems, however, the Q-factors tend to be 
non-linear functions, whose closed forms are unknown. In such 
a scenario, the use of back-propagated neural networks has been 
widely cited in the literature on RL (Tesaru, 1995; Crites and 
Barto, 1998). Hence, in this article, we use a back-propagated 
neural network (Werbos, 1974) to approximate the Q-factors. 
See Exhibit 3. 

Although the RL algorithm can help identify the number of 
trucks to be dispatched at the start of the cycle, it cannot solve 
the problem of allocating the inventory to different products 
and retailers. To this end, we present a technique to allocate the 
inventory that must “help” the RL algorithm.    

Inventory Allocation
An allocation method for the products to be sent in a given truck 
has been discussed in the literature of inventory management since 
the late 1950s. Simpson (1959) discusses an optimum allocation 
policy to minimize the weighted number of lost sales, in which 
the necessary condition is to equalize a weighted probability. 
Simpson’s allocation method has two drawbacks that make it 
unsuitable for the problem in this research. First, only lost sales 
are considered in the allocation method; the holding cost at each 
retailer is also not taken into account. The other drawback is that 
it is not easily implemented when the retailers are not identical. 
This drawback is also seen in other works (Jackson, 1988; Jonsson 
and Silver, 1987). Bertrand and Bookbinder (1998) consider non-
identical retailers, and use a search procedure to determine the 
allocation method. Using these ideas in the literature, we propose 
a rule for inventory allocation, which can work for non-identical 
retailers, and is computationally easy. The aim here is to make the 
ratio of the retailer’s inventory after allocation, which equals the 
sum of the current retailer’s inventory and the allocated inventory, 
to the retailer’s order up-to inventory level (computed via the 
newsvendor model), the same for each retailer and each product. 
That is,                 should be roughly equal for all (i,	k) pairs, where 
xik is the current inventory of retailer i and product k, and Inv(i,k) 

 

Inputs 
(x, y, I)  
 

output 

layers 

Inputs 
(x, y, I)  

output 

layers 

… 

Sum of retailers’ inventory   

State space 

Back -propagation neural network Back -propagation neural network 

Region 

Feature extraction  

 i
i

x

Exhibit 3. The Neural-Network Architecture for the Function Approximator Used
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𝑥𝑖𝑘 + 𝐼𝑛𝑣(𝑖, 𝑘)
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is the inventory allocated to retailer i	and product k. We must  
also ensure that                           .  The computational scheme for this 
can be described as follows: For every	(i,k) combination, compute 
the following:

(In the above,        denotes the nearest integer for the quantity 
inside the brackets.) If Y(i,k)<	 0,	 Inv(i,k)	 =0,	 and otherwise 
Inv(i,k)=	 Y(i,k). Note that this rule uses the newsvendor 
relationship.

Numerical Experiments
In this section, we describe the results of our numerical 
experiments with the technique developed in the previous 
section. We will consider a scenario with two products and ten 
retailers. The parameters of each product at different retailers are 
listed in Exhibit 4. The values of the parameters of each product 
at the DC, the transportation time, and truck-related information 
are listed in Exhibit 5. The parameters in Exhibits 4 and 5 present 
our baseline case. The parameters for the other cases are defined 
in Exhibit 6. Exhibit 7 presents the results obtained with all the 
eight cases that we study. 

Exhibit 4.  Parameters (Demand Arrival, Holding Costs, Stock-Out 
Penalties and Revenues) for the Retailers and the Products

Product Retailer λ
Demand 

Uniform(a,b)
hr pr Rev

1

1 0.25 (1, 2) 0.06 4 5

2 0.5 (0.5, 1.5) 0.05 4 5

3 0.3 (1, 2) 0.03 4 5

4 0.25 (1, 2) 0.04 4 5

5 0.1 (2, 4) 0.03 4 5

6 0.2 (1, 3) 0.05 4 5

7 0.3 (1, 1.5) 0.03 4 5

8 0.5 (0.5, 1.5) 0.06 4 5

9 0.15 (2, 3) 0.04 4 5

10 0.2 (1, 3) 0.05 4 5

2

1 0.5 (0.5, 1.5) 0.04 3 5

2 0.1 (2, 3) 0.06 3 5

3 0.15 (1, 3) 0.04 3 5

4 0.3 (0.5, 2) 0.05 3 5

5 0.35 (0.5, 1.5) 0.03 3 5

6 0.25 (1, 2) 0.06 3 5

7 0.4 (0.5, 1.5) 0.04 3 5

8 0.2 (1, 3) 0.03 3 5

9 0.15 (1.5, 2.5) 0.05 3 5

10 0.25 (1, 2) 0.03 3 5

Exhibit 5. Additional Parameters for Our Numerical Experiments

Parameters
Values

Product 1 Product 2

hDC 0.005 0.005

pDC 1 1

(Q, R) (500, 150) (500, 150)

K 50 50

tDC-ret Uniform (2, 4)

tret-DC Uniform (2, 4)

tret-ret Uniform (0.5, 1)

tDC Uniform (0.2, 0.3)

tret Uniform (0.01, 0.015)

t0 Uniform (30, 50) Uniform (30, 50)

cT 10

Cap 100

 

 Exhibit 6.  Designed Experiment for Parameter Values

Factors Level (-1) Level (+1)

pr Original values Increase the value by 50%

hr Original values Increase the value by 100%

λ Original values Increase the value by 50%

 We now describe how our value function is approximated. 
The inventory at each retailer and DC is encoded using 
“buckets” (Sutton and Barto, 1998). The state is composed of: 
the retailers’ inventory 11{ ,..., }mnx x x=


, where xkj denotes 

the retailer’s inventory of the kth product at the ith retailer; the 
DC’s inventory  1{ ,..., }my y y=


, where yk denotes the DC’s 

inventory of the kth product; and the retailers’ demand forecast 
update 11{ ,..., }mnI I I=


, where	Iik denotes the forecast update 

of the kth product at the ith retailer; m is the number of the 
product items and n is the number of the retailers. The actual 
state space is too large to store all the Q-factors explicitly. We 
used a neural network for which typically the state space must 
first be encoded. We encode the inventory to generate signals 
(levels) for the neural network as follows. Let the inventory for 
a given retailer have a maximum value of b and a minimum 
value of	 a, with c,	 d, and e, chosen in a manner such that:  
a	<	c	<	d	<	e	<b	and	c	–	a	=	d	–	c	=	e	–	d	=	b	–e. Inventory values 
from a to c will be assumed to have a signal of 1, those from c to 

��𝐼𝑛𝑣(𝑖, 𝑘) = 𝑎 . 𝑐𝑎𝑝.
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d will generate a signal of 2, those from d to e a signal of 3, and 
those from e to b a signal of 4. For the case of two products and ten 
retailers, we used 5 signal levels for the inventory of each product 
at the retailers, 3 signal levels for inventory of each product at 
the DC, and 2 signal levels of each demand forecast update (one 
for high and one for low) for each product. We assume three 
actions: 0 trucks, 1 truck and 2 trucks. The number of these 
encoded Q-factors is 2 10 2 2 10 215 3 2 3 2.7 10× ×× × × = × . (Note 
that before the encoding, the state space is even larger!) With 
the look-up table method in which the values of the encoded 
Q-factors are stored explicitly, if it takes one byte to store a value 
of Q-factor, we will need a memory of 122.7 10×  GB to store all 
the Q-factors, which is clearly unrealistic for current computer 
technologies. The state space is separated into 50 regions. In 
each region, we place a neural network to approximate the 
values of the Q-factors in that region (See Exhibit 3). The (Q,R) 
policy for the DC is computed using the technique in Nahmias 
(2001). We run each case for 1,000,000 units of simulation time 
in the learning stage, and 10 replications with each replication 
lasting 100,000 units of simulation time in the frozen stage. For 
Case 1 of our experimental setup (see Exhibit 7), the average 
profit for the entire VMI system using the RL-based algorithm 
proposed in the work is 16.31. Via the newsvendor heuristic, 
the average profit is 15.41. The RL-based algorithm outperforms 
the newsvendor heuristic by 5.84%. Note that the RL algorithm 
uses the newsvendor in deriving its allocation strategy. The 
highest improvement over the newsvendor is about 8%, and 
the lowest improvement is about 4%. The problems that we 
solved did not require more than 10 minutes on a PC. These are  
encouraging results because they show that our RL algorithm 
outperforms a newsvendor. The newsvendor heuristic, 
which is essentially a by-product of our analysis, appears to 
be a solid method in its own right; what is attractive about 
the newsvendor is that it can be implemented easily on any  
spreadsheet software. 

 

Exhibit 7. Results of Using the RL Algorithm and the Newsvendor Heuristic

Case pr hr λ
Newsvendor 

heuristic
RL-based algorithm % Improvement

1 -1 -1 -1 15.41 16.31 5.84

2 -1 -1 +1 25.68 26.75 4.17

3 -1 +1 -1 7.55 8.15 7.95

4 -1 +1 +1 15.01 15.86 5.66

5 +1 -1 -1 14.86 15.7 5.65

6 +1 -1 +1 24.99 25.93 3.76

7 +1 +1 -1 6.39 6.80 6.42

8 +1 +1 +1 13.60 14.21 4.49

Conclusions 
Optimizing the replenishment quantities for a VMI system 
is a problem that has been studied in the literature mostly 
via analytical models. Usually, in the process of constructing 
analytical models, one has to make simplifying assumptions 
about the system. In this article, we presented a simulation-
based approach to determine the replenishment quantities. The 
attractive feature of the simulation-based approach is that one 
can make realistic assumptions about the system. We used a 
reinforcement-learning model based on semi-Markov decision 
processes for solution purposes. Our model requires solution 
of the newsvendor problem. As a by-product, our analysis 
also resulted in a robust newsvendor heuristic. Our approach 
outperformed the newsvendor solution by at least 4% in all 
our experiments. Our computer programs generated solutions 
within minutes for the problems we solved, which we view as 
a positive outcome. As such, our approach can easily be used 
by an engineering manager. The newsvendor heuristic can be 
implemented within any standard spreadsheet software.  

There are some clear implications of our work for the 
practicing engineering manager. When VMI systems are used, 
they need to be carefully optimized. Newsvendor-based rules 
and simulation-based approaches, such as the one proposed here, 
can produce a significant impact on system profits. The computer 
programs needed for these approaches can produce solutions 
within minutes. The newsvendor-based rules can be programmed 
within spreadsheet software.   

We should point out that our simulation-based approach 
could potentially be used in any supply chain where the supplier 
has to determine the shipment quantities to be sent to multiple 
retailers. That is a problem with a broader scope; however, some 
of the assumptions that we have made, e.g., holding and stock-out 
costs absorbed by suppliers, would have to be altered to construct 
a more general model. It is not difficult to make such changes 
in the simulation model, and hence this can potentially form an 
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avenue for additional research. A number of other directions for 
future research can be envisioned.

 First, the policy considered in this article belongs to the 
periodic review class in which the inventory is reviewed at the 
start of the cycle, when the truck (or trucks) comes back. There is 
a body of literature that looks at (Z,z)	type of policies (including in 
particular Fry at al, 2001) for VMI systems. An exciting challenge 
would be to use reinforcement learning for deriving such policies. 
Second, optimization of the routes for the truck fleet along with 
optimization of the replenishment quantities is another direction 
in which the simulation-optimization procedure could be 
developed. It turns out that there is an interesting tabu-search 
procedure (Gendreau et al, 1994) that could be integrated within 
the simulation-optimization framework. Third, optimizing the 
system for both the retailer and the supplier would require a game-
theoretic formulation. This would perhaps require first showing 
the existence of Nash equilibria, but identifying a solution that is 
optimal for both the retailers and the suppliers should provide 
insights that our single-agent optimization model cannot 
provide. Finally, including the manufacturer in the optimization 
model will form a very interesting topic for further research. The 
full impact of the bull-whip effect can only be studied if all three 
levels are taken into account. It will be also interesting to consider 
the impact of risk (Bahill and Smith, 2009) within the analysis.  
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