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Abstract 
Queuing networks (QNs) arise in airports during passenger checking-in.  For studying such systems, much of the 

literature either suggests the use of discrete-event simulation models, which are unfortunately harder to optimize, or 

the use of models based on the exponential distribution for inter-arrival and/or service times. Closed-form models that 

work for any given distribution, which are more generally applicable and are easier to optimize, are less frequently 

studied in the literature. We present a two-moment mathematical approximation, applicable for any given distribution, 

to study waiting times and queue lengths in a typical/generic airport QN. The latter usually consists of two stages of 

queues: a multi-server (G/G/k) queue in the first stage for ID check and parallel, single-server (G/G/1) queues in the 

second stage for a metal-detector/body scanner. Our main contribution lies in developing an approximation for the 

squared coefficient of variation of the inter-departure time in a multi-server queue in the first stage, which is necessary 

to compute the same for the inter-arrival time to the queue(s) in the second stage. Numerical results show that our 

model approximates results from discrete-event simulation well.  Our model can be handily incorporated into an 

optimization framework to determine the optimal number of servers.  
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1. Introduction 
Discrete-event simulation (DES) happens to be a popular tool for estimating performance measures of queueing 

networks (QNs) found in airports. Crook [1], Cetek [2], and Guizzi [3] discuss some classical centralized DES models 

for airport QNs, while Ray and Claramunt [4] present a distributed approach that can be potentially parallelized. 

Brunetta, et al. [5] develop a closed-form model named SLAM (short of Simple Landslide Aggregate Model) for 

answering what-if questions related to airport performance. See also Manataki and Zogafros [6] for detailed DES-

based models for airport QNs. A closed-form mathematical model that evaluates QNs in airports has some advantages 

over DES models, e.g., it is easier to optimize and the model can also be incorporated into spreadsheet software. 

Humphreys and Francis [7] call for a variety of performance evaluation tools for airports, including mathematical 

models. To the best of our knowledge, however, airport QNs have not been studied extensively via mathematical 

models. Two notable exceptions are Dorton [8], who studies an approximation based on M/M/1 queues (i.e., queues 

whose inter-arrival and services times are exponentially distributed), and Lovell et al. [9], who provide a diffusion 

approximation and compare it to results from an M/M/1 queue.  

 

There is empirical evidence [10] to suggest that the inter-arrival times of customers to airport queues often have the 

gamma distribution, for which the M/M/1 model is not satisfactory and a model based on generally distributed inter-

arrival times will be more attractive. In this paper, hence, we will present a closed-form mathematical model for 

evaluating the performance of a multi-stage QN in which one stage has a multi-server queue with generally distributed 

inter-arrival and service times (G/G/k) and the other stage has single-server queues with generally distributed inter-

arrival times and services times (G/G/1). Thus, our work seeks to develop a more general model in which the 
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distributions of the inter-arrival and service times can have any given distribution. Also, for our model, only the first 

two moments of the inter-arrival and service times will be needed. Further, the most challenging aspect of modeling 

a mixed QN of this kind, where one stage has a single-server queue(s) and another has multi-server queue(s), via 

traditional queueing calculus (see Buzacott and Shanthikumar [11]), is approximating the squared coefficient of 

variation of the time between successive departures from a G/G/k queue.  

 

Contributions of this paper: In this paper, we present a new approximation procedure for estimating the squared 

coefficient of variation between successive departures from a G/G/k queue, which allows us to compute the mean 

waiting time of (and the mean number of people in) downstream queues in the system.  In particular, our approach 

here essentially seeks to transform the G/G/k queue in question into a fictitious G/G/1 queue, such that the variance 

of the service time of the latter can be estimated from the parameters (variance of the service time and k) of the G/G/k 

queue. The variance of the service time can in turn be used to approximate the squared coefficient of variation of the 

time between successive departures from the G/G/k queue. We get encouraging numerical results from our 

approximation, and hope that this work will lead to further improvements in these approximations for airport QNs. 

 

The rest of this paper is organized as follows. Section 2 provides the mathematical model for measuring the 

performance of QN. Section 3 presents numerical results from the model. Section 4 concludes the paper with remarks 

on future research.  

 

2. Mathematical Model 
The underlying problem here can be modeled as a 2-stage QN (see Ross [12]), where one has the data for the inter-

arrival time to the first queue and knowledge of the following: (i) the number of servers in each stage, (ii) the 

probability of an entity leaving the first stage to join a queue in the second, and (iii) data for the service times in each 

queue in the system (as well as the queueing disciplines). We note that the QN we study is of the open, generalized 

Jackson network class [12]. 

 

In the above paragraph, by “data,” we mean either the distributions of the underlying random variable (i.e., for inter-

arrival times and the service times) or the values of the first two moments of the underlying random variables. Further, 

we will assume that each queue works on a first in first out (FIFO) discipline; note, however, that to the queue in the 

first stage, in many real-world systems, there may be business class travelers who will get priority. In this model, we 

assume that the influence of such non-FIFO travelers will be minimal. We will also assume that the travel time from 

exiting the first stage to joining the queue in the second stage is negligibly small. Usually, for simulation models, the 

underlying distributions are required, but our mathematical approximation here will rest on knowledge of only the 

first two moments. In other words, even if the distribution is available, only the first two moments will be needed for 

our approximation procedure.  

 

Figure 1 represents the QN that we study here. Customers arrive to the first queue (the ID Check Queue, where 

identification documents are checked) in Figure 1, which is the first stage in the security processing. This queue is a 

multiple-server, single channel queue with generally distributed inter-arrival times and service times (G/G/k to use 

standard queueing notation).  When customers complete their ID check, they are sent to one of the several parallel 

queues in the second stage (the Metal-Detector/Body Scanner and Carryon-Luggage Scanner Queue), shown in Figure 

1. Each queue in the second stage is a single-server queue with generally distributed inter-arrival times and service 

times (G/G/1 to us standard queueing notation). The inputs to our model are hence (i) the first two moments of the 

inter-arrival time and service time to the first queue (first stage), (ii) the number of servers in the first stage, (iii) the 

number of queues in the second stage, and (iv) the first two moments of the service time for each queue in the second 

stage. The outputs from the model will be the mean waiting time and number in each queue in the system. Since our 

proposed mathematical model requires evaluation of a few formulas, a computer program will generate the numerical 

values almost instantaneously, and hence can be used to optimize the number of servers in the first stage and the 

number of queues in the second stage.  

 

The basic methodology that we adopt is to apply (i) Marchal’s approximation of a G/G/k queue [13] to obtain the 

performance measures from the first queue in the network, (ii) classical queuing calculus principles (see [11]) to obtain 

the first two moments of the inter-arrival time to each queue in the second stage and (iii) Marchal’s approximation of 

a G/G/1 queue [14] to obtain the performance measures in the second queue in the network.   
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Figure 1. A QN in an Airport Security Line with 2 servers in the first stage and 4 queues in the second 

 

2.1 Notation 

We begin with some notation: 

𝑘: Number of servers in the multi-server queue in the first stage 

𝜆: Mean rate of arrival=  
1

E(inter−arrival time)
    to the queue in the first stage 

µ: Mean service rate = 
1

E(service time)
 of the queue in the first stage 

𝜌: Utilization in the first stage =  
λ

𝑘μ
  

𝑊𝑞
𝐺/𝐺/𝑘

: Mean wait time in the multi-server queue in the first stage 

𝑊𝑞,𝑖
𝐺/𝐺/1

: Mean wait time in the ith queue in the second stage 

σ𝑎
2 : Variance of the inter-arrival time to the first queue 

σ𝑠
2: Variance of the service time of one server in the first queue 

Ca
2 : Squared coefficient of variation for the inter-arrival time = 

𝜎𝑎
2

(
1

λ
)

2
 

Cs
2: Squared coefficient of variation for the service time of one server in the first stage  

Cd
2: Squared coefficient of variation for the time between successive departures from the first stage 

Ca,i
2 : Squared coefficient of variation for the inter-arrival time to the ith queue in the second stage 

 

2.2 Model 

We now present details of how the performance metrics are actually calculated for each stage. For the first stage, we 

use an approximation suggested by Marchal [13] for G/G/k queues for the mean waiting time in the queue: 

 

                                                   𝑊𝑞
𝐺/𝐺/𝑘

=  
𝜋0(

λ

μ
)

𝑘
ρ

𝑘! (1−ρ)2  
(1+𝐶𝑠

2)(𝐶𝑠
2+(ρ2𝐶𝑠

2))

2(ρ2𝐶𝑠
2)𝜆

                                                      (1)                                                                                                                                             

First Stage

Second 
Stage

= Customer
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in which we need the steady-state probability of having no customers in the system of an M/M/k queue, which is 

defined as follows [12]:   𝜋0 =  ∑
kρ

m!

m
.𝑘−1

𝑚=0                                                                                                                                              

 

Now, we discuss the model for the second stage. Note that the mean rate of arrival to the ith queue in the second stage, 

λi, is given by: λi =  Piλ where P𝑖 is the probability of a customer selecting the ith queue in the second stage. Then, 

one can calculate the squared coefficient of variation of the time between successive departures from the first queue, 

based on the approximation in [11], via: 

 

                                                      Cd
2  =  ρ2Cs

2  +  (1 − ρ2)Ca
2                                                   (2)                                                                                    

 

in which we approximate the squared coefficient of the service time in a G/G/k queue by the following:  

 

                                                                  Cs
2 =  

σ𝑠
2𝑘

(
1

𝜇
)

2.                                                                                    (3) 

The approximation is rooted in aggregating the variance of the k servers and treating the multi-server queue as one 

whose variance is σ𝑠
2𝑘, effectively transforming the G/G/k queue into a fictitious G/G/1 queue for the purpose of 

modeling. The above equation is a key contribution of this paper. The squared coefficient of variability of the inter-

arrival time at the ith queue in the second stage will then be given by the following well-known equation of queueing 

network calculus [11]:  Ca,i
2  =  1 − Pi + (Pi ∗ Cd

2).           

                                                                                                                                                                                                                                        

Using µi to denote the mean service rate of the ith queue in the second stage, we have that the utilization in the ith 

queue is given by 𝜌𝑖 =  
𝜆𝑖

μ𝑖
. One can now compute the mean waiting time in the ith queue of the second stage using 

Marchal’s approximation for a G/G/1 queue [14], which results in the following formula for the mean waiting time in 

the ith queue of the second stage: 

 

                                                𝑊𝑞,𝑖
𝐺/𝐺/1

 ≅  
𝜌𝑖

2 (1 + Cs,i
2 )(Ca,i

2  + 𝜌𝑖
2Cs,i

2 )

2 (1 – 𝜌𝑖
2)(1 + 𝜌𝑖

2Cs,i
2 )𝜆𝑖

                                                     (4)                                                                                                                                      

 

 

where  Cs,i
2  denotes the squared coefficient of variability of the service time of the ith queue. We note that the mean 

number in any queue in the entire QN can be easily computed from the mean waiting time in the queue via Little’s 

rule.  

 

3. Numerical Results  
We tested our mathematical model on ten representative cases, which vary in terms of: (i) squared coefficients of 

inter-arrival time in the system, (ii) squared coefficient of variation of service time for queues in the first and second 

stage in the network, (iii) the number of servers, and (iv) the service time distributions. In all the cases we studied, 

there were five parallel queues in the second stage of which one was significantly slower and was used to represent 

the server used for special/additional screening, which requires extra time; the other four had identical service rates. 

We ran discrete-event simulations to benchmark the performance of our model. The error was computed against results 

from simulations. The error in the mean wait in the queue was calculated as: 𝐸𝑟𝑟𝑜𝑟 % =  
|𝑊𝑞

𝑀𝑜𝑑𝑒𝑙−𝑊𝑞
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛|

𝑊𝑞
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛  𝑋 100. 

 

The numerical results from all our experiments are presented in Tables 1 and 2 below. The computer programs for 

evaluating the mean waiting times and queue length using our approximation were written in MATLAB, while those 

for the simulation results were written in ARENA. All programs were run on an Intel Pentium Processor with a speed 

of 2.66 GHz on a 64-bit operating system. The computer programs for our mathematical model took about 10 

milliseconds; however, the simulation programs took longer (about 1 minute), since they involve multiple replications.  

 

Usually, queueing approximations can result in errors of about 25% (see [13-14]). Therefore, our numerical results 

are quite encouraging: on the low end, the error computed was 0% and on the high-end the error was 26.5%.  
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Table 1: Results for first queue in the network: T (min, mode, max) denotes the triangular distribution, N(mean, 

variance) denotes the normal distribution, and Gm (mean, variance) denotes the gamma distribution. The inter-

arrival time has a gamma distribution whose mean is 5 for each case and whose Ca
2 value is specified for each case 

in the table. 

Case k 𝐶𝑎
2 Service Dist. 

First Stage 
µ 

 

𝐶𝑠
2 𝑊𝑞

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑊𝑞
𝑀𝑜𝑑𝑒𝑙  % Error 

1 2 0.45 T(1.33, 3.33, 

15.33) 

0.15 0.215 

1.3952 1.6134 15.64 

2 2 0.50 T(1.33, 3.33, 

15.33) 

0.15 0.215 

1.4617 1.7613 20.50 

3 3 0.60 N(10,5) 0.10 0.05 1.1643 1.4203 21.99 

4 3 0.65 N(10,5) 0.10 0.05 1.2134 1.5344 26.45 

5 4 0.75 N(10,5) 0.075 0.05 1.4112 1.5008 6.35 

6 4 0.95 N(10,5) 0.075 0.15 2.1968 2.0739 5.59 

7 6 0.65 Gm(20,60) 0.05 0.15 0.89842 1.1001 22.45 

8 6 0.70 Gm(20,60) 0.05 0.15 1.1029 1.1769 6.71 

9 7 0.65 T(4.67,11.87,

53.67) 

0.043 0.215 

0.9466 1.0338 9.21 

10 7 0.70 T(4.67,11.87, 

53.67) 

0.043 0.215 

1.1915 1.1031 7.42 

 

Table 2: Results of the second queue in the network which consists of five single-server queues in parallel where 

service times are normally-distributed. The first four servers have a mean service rate of 1/20, while the fifth server 

has a rate of 1/23. Also, Pi = 1/5 for all values of i.  

 i= 1:5 Servers 1 - 4 Server 5 

Case 𝐶𝑠,𝑖
2  𝑊𝑞

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑊𝑞
𝑀𝑜𝑑𝑒𝑙  % Error 𝑊𝑞

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑊𝑞
𝑀𝑜𝑑𝑒𝑙  % Error 

1 0.10 37.84375 38.5873 1.96 138.59 127.9198 7.70 

2 0.15 40.73775 40.7397 0.00 141.08 135.1733 4.19 

3 0.10 39.60825 38.67 2.37 156.17 128.1881 17.92 

4 0.15 39.635 40.8236 3.00 141.05 135.4432 3.98 

5 0.10 45.796 39.3593 14.06 119.73 130.4235 8.93 

6 0.15 44.05875 42.5957 3.32 186.78 141.1413 24.43 

7 0.10 38.36725 39.2673 2.35 141.95 130.1254 8.33 

8 0.15 51.751 41.4298 19.94 186.94 137.3925 26.50 

9 0.10 38.0355 39.5063 3.87 117.52 130.9 11.39 

10 0.15 48.90425 41.6723 14.79 186.09 138.1723 25.75 

 

4. Conclusions 
Queuing approximations such as the G/G/1 approximation presented above are now widely used in manufacturing 

systems for measuring lead times (see Askin and Goldberg [15]). Queueing network (QN) approximations, which are 

more complex than the same for approximating a single queue, have also been used extensively in modeling 

production lines [16]. In this paper, we presented a new mathematical model for approximating a (mixed) 2-stage QN 

in which in one stage there is a G/G/k queue and in another there is a set of parallel queues, each belonging to the 

G/G/1 family. Our contribution in this paper is in formulating a novel way to compute the squared coefficient of 

variation for the time between successive departures from the G/G/k queue in the first stage. We obtained encouraging 

numerical results with our approximation procedure.  

 

There are multiple avenues for future research based on this work. First, our approximating procedure can be used to 

optimize the number of servers. Another potential line for further research would measure the variance of the waiting 

time in each queue using the third moment. Finally, an important direction for queueing approximations in general is 

to find ways to reduce their errors.  
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