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Abstract

In recent times, a number of machine-learning and pattern-recognition methods have been
used to solve operations-management problems in the real world. In this report, we focus on
a powerful learning automata algorithm, from the field of pattern-recognition and machine
vision, to solve stochastic discrete-optimization problems encountered in the industry. The
algorithm is due to Thathachar and Sastry [51]. We present an empirical study of this
technique on two real-world test-beds of interest in engineering management. The first
test-bed, which is from production management, is a complex buffer-optimization problem
that defies exact theoretical analysis. The other test-bed is related to revenue management
from the airline domain where also it is difficult to develop an exact theoretical model. We
find that the learning automata technique produces encouraging computational results. We
also discuss some analytical properties of the algorithm.

Keywords: learning automata, buffer optimization, revenue management

1. Introduction

Artificial-intelligence (AI) and information-technology (IT) paradigms have been used for
data mining, forecasting, and manufacturing control etc for some time now. They are
emerging as powerful players in solving management science problems as well. The advan-
tages of using them on management-science problems are more obvious in complex domains
where theoretical models are not easily obtainable. Many theoretical models break down in
the face of realistic assumptions making them less useful in solving complex management-
science problems arising in the real world. It is well-known that for stochastic systems,
simulation-based models are capable of (i) accurately evaluating the function and (ii) ac-
commodating real-world assumptions. In other words, where theoretical models break down,
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simulation-based models can estimate the objective function accurately. On such problems,
AI- and IT-based optimization paradigms become especially useful because they can be
combined easily with simulation models. Combination of AI- and IT-based paradigms with
simulation, hence, forms a powerful tool for solving complex real-world problems.

Models that do not exploit the closed form of the objective function but rely on numeric
function evaluations are often referred to as black-box models. Oftentimes black-box models
— especially those belonging to the AI family — are computationally intensive. But,
because of the increasing power of computers and the ever-increasing need for generating
more accurate models in the industry, the popularity of black-box paradigms is on the rise
— especially in the field of IT. In recent times, machine learning and AI methodologies have
made a dramatic impact in operations management. Examples of such methodologies, to
name only a few, are: (i) Meta-heuristics and stochastic search (see [49] for a unified view),
e.g., tabu search [18], simulated annealing [28] (SA), genetic algorithms [27], simultaneous
perturbation [45], nested partions [42], ant colony [10], stochastic ruler [59], dyna-search [11],
and GRASP [15], (ii) neural networks [25], e.g., neurons, backpropagation, and radial-basis
networks, and (iii) reinforcement learning [48, 19], e.g., Q-Learning [57], SARSA [39, 47],
and average-cost algorithms [23, 22, 20].

The theory of learning automata (LA), which is yet another AI-based methodology
(see [33] for a comprehensive text; other important texts and lecture-notes series include
[53, 34, 4, 29, 14]), is a powerful and untapped source of computational techniques that
could be exploited for solving real-world problems in operations management. In this re-
port, we have discussed how to adapt a largely-unknown, but powerful, pattern-recognition
algorithm from the theory of LA to solve discrete optimization problems arising in industrial
domains, e.g., production systems and airline systems. The algorithm we study here was
introduced in Thathachar and Sastry [51], and unlike many LA algorithms, it can be used
for multi-variate optimization. LA algorithms have stayed largely-restricted to IT-based
domains, e.g., pattern-recognition and machine vision tasks [40, 16]. Some applications to
management-science domains include [35, 54, 21]. In [36], a single-decision variable LA
algorithm has been used for selecting the best system in simulations.

In this report, we first present an empirical testing of the multi-variate algorithm of
[51] on two complex real-world problems — one from buffer management in transfer lines
and the other from revenue management in the airline industry. Thereafter, we study some
analytical properties of the algorithm.

The rest of this report is organized as follows. Algorithm details are provided in Section
2. Section 3 presents empirical results with the buffer-optimization problem while Section
4 presents results with the airline problem. Some analytical properties of the algorithm are
studied in Section 5. Section 6 concludes the report with a discussion of the work presented
here and directions for further research.

2. Algorithm Details

The LA algorithm that we focus on differs from and resembles other relevant algorithms in
a number of ways. All LA algorithms belong to the family of stochastic search algorithms.
But, as mentioned above, unlike a majority of other LA algorithms, the LA algorithm of [51]
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can be used for multiple decision variables. Also, unlike most other meta-heuristics, LA is
not a local search technique; as such, it does not need any neighborhood-generation scheme.
LA’s working mechanism in some sense is memory-based, which is similar to that of many
other meta-heuristics. Also, like most meta-heuristics, its convergence is asymptotic, i.e., it
converges to the optimal solution when the number of iterations tend to infinity. However,
we will show later that the algorithm has a natural stopping criterion that can be exploited
in practice.

Table 1: Relationship between AI and optimization terminologies

LA Optimization Theory

1. Automaton Decision Variable

2. Policy or collection of actions Solution

3. Environment Objective function

4. Feedback (or response) from environment Objective function value

5. Learning rate Step size

The theory of LA has its roots in adaptive behavioral psychology and learning. As
such much of its terminology is heavily based on terms popular in IT and AI. Therefore,
in Table 1, we provide a one-to-one map of its terminology with commonly-used terms in
operations research (OR). We now provide an intuitive explanation of how LA works. In
the data-base, it maintains a distribution of quantities which are updated in every iteration
of the algorithm. The quantity in question will be denoted by pk(i, a) and will be used
for selecting the value a for the ith decision variable in the kth iteration of the algorithm.
We will show in Section 5 that this quantity, pk(i, a), is actually a probability measure.
Further let I denote the number of decision variables, and let A(i) denote the set of values
that the ith decision variable can assume. We will assume that A(i) is finite for any
given i, but that

∏I
i=1 |A(i)|, which is the size of the solution space, is too large for an

exhaustive evaluation. In the beginning, this probability is assigned the same value for all
parameters. That is, for any i, p1(i, a) = 1

|A(i)| for every a. Using these probabilities, a value
is selected for each decision variable. These values together constitute a “solution.” The
algorithm updates these quantities based on the value of the objective function obtained
from the solution. The updating mechanism is designed to ensure the following: When
a good solution is obtained, the probability of selecting it is increased, and when a poor
solution is obtained, the probability of its selection is reduced. Clearly, after each update,
the algorithm gets smarter. As the algorithm progresses, it makes improved choices, and is
gradually attracted to the optimal solution.

To be used in the updating mechanism, the objective function value has to be normalized
to a number between 0 and 1 using the best and worst possible values for the objective
function. The objective function value, G, is normalized as follows.

G−Gmin

Gmax −Gmin
,
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where Gmax and Gmin denote the maximum (best) and the minimum (worst) objective
function value, respectively, that can be obtained from the problem. The value of Gmax and
Gmin may be available from performance-analysis bounds on the problem or else have to be
“guesstimated,” by the user.

In the algorithm description below, B(i, a) will denote the best normalized objective
function value — obtained so far in the algorithm— associated with selecting the value a
for the ith decision variable. F∗ will denote the best normalized objective function value
found so far in the algorithm. The step size used in updating the quantities will be denoted
by µ. The algorithm is written in terms of maximizing the value of the objective function.

2.1 Steps in the algorithm

1. Set the number of iterations, k, to 1. Also, set

p1(i, a) =
1

|A(i)| , and B(i, a) = 0

for i = 1, 2 . . . , I and every a ∈ A(i). Assign any positive value less than 1 to µ.
Gmax and Gmin are to be assigned as discussed above. F∗, which denotes the best
(normalized) objective function value obtained so far by the algorithm, is set to a
negative value. Also, ~x∗ will denote the best solution obtained so far. Specify ε > 0.

2. For the ith decision variable, with i = 1, 2 . . . , I, select a value x(i) with probability
equal to pk(i, x(i)). Let the decision variable vector thus generated be denoted by ~x.
Evaluate (via simulation) the objective function associated with ~x. Let the objective
function value be G. Normalize this value, G, using:

F =
G−Gmin

Gmax −Gmin
.

If F > F∗, set ~x∗ = ~x and F ∗ = F .

4. For i = 1, 2, . . . , I, perform the following updates separately for each value of i:

For a = 1, 2, . . . , |A(i)|

4a. If B(i, a) < B(i, x(i)), set:

pk+1(i, a) = pk(i, a)− µ [B(i, x(i))−B(i, a)] pk(i, a).

4b : If B(i, a) > B(i, x(i)), set

pk+1(i, a) = pk(i, a) + µ [B(i, a)−B(i, x(i))]
[
1− pk(i, a)

] pk(i, x(i))
|A(i)| − 1

.

5. For every i = 1, 2, . . . , I, perform the following update:

pk+1(i, x(i)) = 1−
∑

a 6=x(i)

pk+1(i, a).
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6. For every i = 1, 2, . . . , I, check if for at least one a ∈ A(i),

pk(i, a) > 1− ε.

If the above is true for all values of i in {1, 2, . . . , I}, then return ~x∗ as the best solution
and stop. Otherwise, go to Step 7.

7. For every i = 1, 2, . . . , I, perform the following update:

• If F > B(i, x(i)), set B(i, x(i)) = F .

8. Set k ← k + 1 and return to Step 2.

In the following two sections, we will provide computational results obtained from em-
pirical tests on large-scale stochastic discrete-optimization problems using LA.

3. Buffer Optimization in Transfer Lines

In this section, we discuss the empirical tests on a buffer-management problem commonly
experienced in flow shops or transfer lines. In such systems, parts flow from one machine
(or production stage) to another. When parts complete their processing on one machine (or
stage), they are temporarily stored in between that machine and the next inside containers
or “buffers.” The Just-In-Time philosophy, which is an integral part of lean manufacturing,
calls for placing an upper limit on the size (capacity) of these buffers (see [3] for a recent text
on lean production systems). It is well-known [2] that for unreliable machines with random
production times and random repair times, it becomes quite difficult to generate exact theo-
retical models for performance analysis — especially when the number of machines is large.
A performance analysis model is a critical first step in optimizing buffer capacities. While
an extensive literature exists on this topic (see [17] and [1]), much of it makes simplifying
assumptions to develop tractable theoretical models. The problem was first studied by [9].
A subset of the more recent works include [44, 13, 41]. Simulation can be used effectively
for generating a performance-analysis model. Thereafter, an AI-based tool like LA can be
combined with the simulator for optimizing buffer capacities. We describe the problem in
some detail next and then present some numerical results.

3.1 A problem description

Consider a linear sequence of machines (see Figure 1) in which one machine feeds parts to
the next. In such machines, disruptions, arising out of differences in production rates or
failures of machines, can lead to a significant reduction in the overall production rate of the
line, i.e., the throughput. Hence, typically, buffers are placed in between machines to absorb
the fluctuations in the line — fluctuations arise out of inequality of production rates between
adjacent machines, and idle times of machines due to failure. Placing an upper limit on
the buffer size is a notion that has origins in the concepts of Kanban and CONWIP. The
idea works as follows: When a downstream buffer is full, the machine that feeds material
into the buffer must stop. This is called blocking. When there are no parts in the buffer

5



Gosavi, Tezcan, and Wichinrojjarun:

preceding a machine, the machine has to stop until the preceding buffer acquires a part.
This is called starving. Buffers can smoothen the activities on a production line thereby
increasing — to some extent — the production rate, and hence the profit rate, of the line
as whole. However, they represent locked-up capital and risk. Holding large buffers also
results in increased inventory-holding costs. As a result, a commonly-experienced problem
in buffer management is to find the values for the maximum buffer sizes that optimize
overall profits. Our goal here is to compare the performance of LA to simulated annealing
(SA), which is a standard meta-heuristic, on a large-scale version of the problem on which
it is difficult to develop an exact theoretical model.

 
 

    

 
 

 

 
 ........

Raw

Material

Finished

Product

Machine

Buffer

Figure 1: A transfer line with intermediate buffers.

We next provide some notation needed to develop the optimization model:

• n: the number of buffers in a system of (n + 1) machines,

• π: the profit per part produced,

• h: the WIP (work-in-progress) holding cost per unit piece per unit time,

• ~b = {b1, b2, . . . , bn}: a vector in which bi denotes the maximum size of the buffer
between the ith and (i + 1)th machine,

• T (~b): the expected throughput (parts produced per unit time by last machine) asso-
ciated with the transfer-line system when the buffer vector is ~b,

• B̄i: the average inventory in the ith buffer,

• αi: the production rate of the ith machine for i = 1, 2, . . . , n + 1,

• βi: the failure rate of the ith machine for i = 1, 2, . . . , n + 1, and
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• γi: the repair rate of the ith machine for i = 1, 2, . . . , n + 1.

Note that the time between productions, failures, and repairs are random variables. Then
a generic optimization problem is to maximize:

ρ = πT (~b)− h
n∑

i=1

B̄i,

such that bi ∈ N , the set of non-negative integers, and i = 1, 2, . . . , n. It is, as mentioned
above, quite difficult to develop closed-form expressions for the objective function under
general assumptions such as arbitrary distributions for production times, failure time, and
repair time. The tests presented below were conducted on large problems. We now describe
the simulation-based model developed.

3.2 A simulation model

Consider a probability space (Ω,F , P ), where P denotes the distribution of the long run-cost
of running the transfer-line system. The system can be simulated, and from the distribution
P , one can generate a finite but large sequence of random samples {ω1, ω2, . . . ωk}. Let
θ(i, ωj , t) denote the number of units in the ith buffer at time t in the sample ωj , and let
Φ(ωj , τ) denote the number of units produced by the last machine by time τ in the sample
ωj . Then, by the strong law of large numbers, with probability 1, the long-run expected
profits can be estimated with a simulation model using the following:

ρ = π lim
k→∞

1
k

k∑

j=1

lim
τ→∞

Φ(ωj , τ)
τ

− h

n∑

i=1

lim
k→∞

1
k

k∑

j=1

lim
τ→∞

∫ τ
0 θ(i, ωj , t)dt

τ
.

3.3 Empirical Results

We ran several tests on the buffer-management problem. System parameters for our tests
and the average profits of LA and SA are presented in Table 2. In each performance evalu-
ation, the system was run for a time of 100, 000 time units, and 4 replications were used for
estimating the expected profit. The solution space of the largest problem is approximately
5010, and as such exhaustive search is ruled out. The production, repair, and failure arrivals
are Poisson processes.

A number of different strategies were tried for SA. We omit a description of SA because
it can be found in a wide variety of texts, e.g., see pages 13-14 of Pham and Karaboga
[37]. The first issue in selecting a strategy for using SA is that of generating neighbors.
The strategy we followed worked as follows. Given a solution (b1, b2, . . . , bn), the next
solution is: (b1 + z1, b2 + z2, . . . , bn + zn) where zi for i = 1, 2, . . . , n is a random number
from the uniform discrete distribution assuming the value of 0 with probability equaling
0.5 and the value of 1 with the same probability. The second issue in SA is that of the
exploration probability which is guided by the temperature. The temperature, T , in the
mth iteration was set at 10000/ln(1+m) in our experiments using the rule in [24]. A newly
generated worse solution was accepted with a probability of exp(−∆/T ) where ∆ denotes
the positive difference between the objective function value (cost) of the new (worse) solution
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Table 2: A comparison of average profits obtained with LA and SA on the buffer-

optimization problem. For all the cases, π = 20.

n (αi, γi, βi), i = 1, 2, . . . , n h LA SA

4 (3.7,0.17,0.07)(1.5,0.37,0.11)(1.1,0.78,0.49)(3.0,0.5,0.19) 1 8.35 8.31

4 (3.0,0.45,0.38)(1.0,0.55,0.3)(2.0,0.5,0.35)(3.6,0.4,0.45) 1 7.88 7.88

5 (1.2,0.3,0.1)(1.0,0.5,0.3)(3.0,0.02,0.50)(3.0,0.3,0.4)(1.8,0.1,0.2) 1 1.87 1.88

5 (2.8,0.64,0.3)(1.7,0.83,0.4)(2.5,0.75,0.45)(3.4,0.85,0.35)(1.9,0.74,0.1) 1 10.00 9.99

5 (2.6,0.4,0.08)(3.0,0.4,0.24)(3.4,0.6,0.2)(4.7,0.5,0.17)(1.5,0.3,0.1) 1 17.76 17.70

6 (3,0.2,0.3)(1.0,0.5,0.5)(1.2,0.3,0.1)(1.8,0.1,0.2)(1.5,0.2,0.3) 0.2 4.82 4.84

(2.0,0.3,0.4)

8 (1.0,0.52,0.25)(3.6,0.48,0.18)(1.7,0.58,0.23)(1.4,0.5,0.32) 0.8 3.88 3.87

(2.8,0.47,0.19)(2.7,0.46,0.35)(1.6,0.66,0.26)(1.2,0.41,0.20)

9 (2.5,0.7,0.2)(1.5,0.6,0.1)(2.8,0.8,0.3)(3.6,0.8,0.2)(2.1,0.7,0.1) 0.3 15.56 15.56

(1.9,0.6,0.1)(2.7,0.8,0.3)(3.0,0.5,0.2)(2.0,0.6,0.3)

10 (2.7,0.8,0.1)(1.8,0.3,0.15)(2.1,0.5,0.3)(2.3,0.5,0.2)(1.6,0.8,0.27) 0.1 13.81 13.79

(2.7,0.7,0.3)(1.5,0.6,0.12)(1.5,0.6,0.2)(1.2,0.6,0.13)(2.6,0.4,0.3)

10 (2.4,0.465,0.365)(1.7,0.565,0.215)(2.8,0.485,0.305)(2.2,0.455,0.375) 0.1 6.7041 6.24

(2.1,0.455,0.340)(2.5,0.390,0.390)(1.1,0.5,0.265)(1.3,0.49,0.285)

(1.6,0.495,0.255)(0.8,0.505,0.240)
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and the same for the current solution. The results obtained are also provided in Table 2. A
positive conclusion from our results is that LA’s performance is comparable to a standard
meta-heuristic, i.e., SA. LA has been shown to converge to near-optimal solutions on small
problems [52].

4. Airline Revenue Management

A central problem in airline revenue maximization is that of seat allocation, i.e., selecting
the optimal mix of passengers from the pool available. Generally, on most flights, seats are
offered at many different fares because there are differences in passenger expectations. Many
business passengers are willing to pay higher fares for additional features, while others are
not. As a result, it makes business sense to reserve a few seats for high-revenue passengers
who usually make reservations towards the end of the booking horizon. Passengers who
pay the same fare are said to belong to the same fare class. The decision-making problem
is centered on the following question: What should the upper limits on the number of seats
to be sold in each fare class be? Setting the wrong limits can result in a situation in which
there are no seats remaining for higher-fare passengers, who generally come later in the
booking horizon. On the other hand, if all seats are reserved for higher fares, then most
passengers will go elsewhere resulting in lowered revenues for the carrier. We now provide
a more detailed description of the problem.

4.1 A problem description

Here, we consider a single leg of a journey. In each leg, the goal is to determine the
number of passengers who can be allowed to buy tickets at a given fare. The problem is
complicated by uncertainties in customer behavior: customer arrival is a random process
and some passengers cancel tickets. As a result, airlines overbook planes in order to take
care of last-minute cancellations; otherwise, planes can fly with empty seats, which adds to
the complexity of the problem because cancellations are random. Fare classes are typically
determined by the time of arrival in the booking horizon, the total number of flights for the
passenger, etc. We do not concern ourselves with how fare classes are determined because
our simulation-based model will work for any type of classification.

Real-world airline systems are characterized by the following features: (i) random cus-
tomer arrivals for booking, (ii) random cancellations, (iii) non-sequential arrival patterns,
i.e., there is no particular order of arrival of passengers according to their fare classes (in
sequential arrivals, low fare classes arrive first), and (iv) no-shows at departure time. Most
theoretical models in the literature cannot accommodate all these assumptions simultane-
ously because that leads to intractable models — especially when one considers concur-
rent arrival patterns and general cancellation probabilities [46, 56]. This makes the use of
simulation-based models attractive. A large number of researchers both in the academic
and practitioner world have worked on this problem. A literature review of the problem
reveals the following works: [31, 43, 5, 12, 58, 30, 8, 38, 46, 55, 50, 6, 56, 22, 20]. Some
of these works use a “network version” of the problem; the network version can usually be
decomposed into a number of independent single-leg problems.
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In our simulation model, we assume concurrent or non-sequential arrival patterns, that
cancellations can occur, and that cancellation rates are independent for every fare class.
We combine a single-leg airline simulator with an LA-based and an SA-based optimizer to
determine the optimal limits on the fare classes.

4.2 A simulation model

Mathematically, the seat-allocation can be cast in the following form: find the value of
the booking-limit vector ~x = {x1, x2, . . . , xn}, where n is the number of fare classes, that
maximizes the expected revenue from each flight, i.e.,

max
~x∈θ

EP [T (~x, ωk)], in which

EP [T (~x, ωk)] = lim
k→∞

T (~x, ωk)
k

, with probability 1

where P , a probability measure on a sample space (Ω,F), denotes the distribution of the
revenue from a flight, EP denotes expectation with respect to P , θ is a subset of Rn, and
T : Rn × Ω → R is a scalar-valued function such that T (~x, ωk) denotes the total revenue
obtained from the ωkth sample flight, in which the booking limits vector is ~x. In what
follows, we drop the superscript k in ωk to improve readability. Some more notation,
needed to define T (~x, ω), is as follows:

• Av: penalty incurred by passenger for cancellation in the vth class,

• fv: revenue (fare) associated with the vth class where f1 < f2 < · · · < fn,

• B: the penalty incurred by company for bumping a passenger,

• C: plane’s capacity, and

• H: the time horizon over which booking is permitted.

Also, if the booking-limits vector is ~x, then ρv(~x, ω) will denote the number of passengers
admitted in the vth class by the end of the ωth flight, and cv(~x, ω) will denote the number
of passengers who canceled tickets from the vth class by the end of the ωth flight. Then,
the total revenue obtained in the ωth sample flight, if ~x is the booking-limits vector, can be
expressed as:

T (~x, ω) =
n∑

v=1

(ρv(~x, ω)− cv(~x, ω)) fv +
n∑

v=1

cv(~x, ω)Av

−B max

[
0,

{
n∑

v=1

(ρv(~x, ω)− cv(~x, ω))− C

}]
.

In the right hand side of the above, the first term denotes the revenues obtained from the
net sale of seats, the second denotes the revenues from cancellations, and the last denotes
the net cost of disallowing boarding. The average revenue per unit time is then

ρ =
EP [T (~x, ω)]

H
.
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4.3 Empirical Results

In Table 3, we present the parameters for the single-leg-problem scenarios we studied. The
average profits associated with LA, SA, and the EMSR (expected marginal seat revenue)
heuristic [5] — a widely-used industrial heuristic — are presented in Table 4. We describe
the EMSR heuristic in Appendix A. As is clear from Table 4, LA runs neck-to-neck with
SA and outperforms EMSR. For SA, we used the EMSR solution as the starting solution.
Also, the temperature in the mth iteration was set at 1000/ln(1+m). See [37] (pages 13-14)
for a standard description of SA.

Table 3: Input parameters for the airline revenue management experiments. λ denotes

the mean rate of Poisson arrivals, cdi denotes the probability that the arriving

passenger belongs to class i, and PC denotes the cancellation probability. H = 100

System C λ (f1, f2, f3, B) (cd1, cd2, cd3) PC

1 100 1.00 (100,175,250,300) (0.5,0.3,0.2) 0.10

2 100 1.00 (199,275,350,400) (0.5,0.3,0.2) 0.15

3 100 1.00 (350,450,550,600) (0.5,0.3,0.2) 0.20

4 100 1.50 (100,175,250,300) (0.7,0.2,0.1) 0.10

5 100 1.5 (199,275,350,400) (0.7,0.2,0.1) 0.15

6 100 1.5 (350,450,550,600) (0.7,0.2,0.1) 0.20

7 150 2.0 (100,175,250,300) (0.3,0.3,0.4) 0.10

8 200 2.0 (100,175,250,300) (0.7,0.2,0.1) 0.10

9 200 2.0 (199,275,350,400) (0.7,0.2,0.1) 0.15

10 200 2.0 (350,450,550,600) (0.7,0.2,0.1) 0.20

11 150 2.0 (199,275,350,400) (0.3,0.3,0.4) 0.0

12 200 2.0 (100,175,250,300) (0.5,0.3,0.2) 0.0

13 100 2.0 (100,175,250,300) (0.5,0.3,0.2) 0.10

14 100 2.0 (199,275,350,400) (0.5,0.3,0.2) 0.15

15 100 2.0 (350,450,550,600) (0.5,0.3,0.2) 0.20

5. Computational and convergence properties

A number of computational and analytical properties of the LA algorithm deserve spe-
cial mention. We first discuss some computational properties. Many IT-based algorithms
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Table 4: A comparison of LA’s performance (with respect to average revenues ρ) with that

of SA and EMSR on the revenue-management problem

System LA SA EMSR

1 174.982 171.28 144.42

2 259.141 258.13 238.23

3 442.240 442.240 394.47

4 182.267 186.34 142.13

5 315.590 321.98 251.88

6 539.873 531.24 444.44

7 261.907 261.907 260.74

8 367.851 362.67 233.64

9 545.759 545.759 424.46

10 849.800 849.800 731.47

11 412.833 414.34 357.88

12 348.781 341.234 289.14

13 204.559 204.559 128.03

14 331.575 331.575 252.10

15 568.654 568.654 470.96
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require large data-bases. It turns out that LA requires a maximum of I ·maxi |A(i)| proba-
bilities in its data base, but obviously this is much smaller than the size of the solution space,
which is

∏I
i=1 |A(i)|. An obvious problem that can be encountered in an LA-simulator com-

bination is that the same solution may be evaluated repeatedly. This can be easily avoided
by using binary trees as was done in [40].

Although asymptotic convergence of the algorithm has already been established in [51], a
number of convergence properties of the algorithm are interesting in the context of practical
applications, and deserve further analysis. In particular, what is often of interest in meta-
heuristics is to generate a meaningful stopping criterion. The stopping criterion, presented
in Step 6, needs to be analyzed. In practice, as has been documented in the original paper
[51], the probabilities of selecting the optimal (or near-optimal) solution start converging to
1. In this context, we present Theorem 1. For Theorem 1, we will first need the following
lemma.
Lemma 1. The quantity pn(i, a) — generated in the algorithm — stays in the interval ]0, 1[
(open interval between 0 and 1) for all values of i ∈ S and all values of a ∈ A(i) for any
value of n.

The proof is placed in Appendix B. Indeed, the need for the lemma may not be imme-
diately obvious; in fact, it does not state an obvious fact. The algorithm uses the values
defined in p(., .) and updates them. However, if they are to serve as probabilities, it is neces-
sary to show that these values remain between 0 and 1; the algorithm’s updating mechanism
in Step 5 only ensures that the values for any decision variable sum to 1.

Essentially Theorem 1 will prove that once an optimal solution is struck, the probability
of selecting the optimal solution will increase monotonically, and in practice this assures us
that the algorithm will gradually settle down on the optimal solution. Therefore, once the
algorithm visits the optimal solution, it will visit it repeatedly with increasing probability.
In other words, the optimal solution is selected with an increasing probability after its
first visit, which ensures that asymptotically, the algorithm gets “trapped” in the optimal
solution.
Theorem 1: The probability of selecting the optimal solution in the kth iteration, that is,∏I

i=1 pk(i, x∗(i)), increases monotonically with k — after the optimal solution is struck for
the first time.

The proof is placed in Appendix C. In practice, the usefulness of the above result can
be exploited in setting a termination criterion. Since the optimal probabilities will increase
after striking the optimal solution, the algorithm can be terminated when the probabilities
exceed the threshold 1− ε set in Step 6.

6. Conclusions

This report presented an empirical study of a useful AI-based algorithm on two complex
problems in management science — one from stochastic production lines and the other from
airline revenue management. Both problems, under very general assumptions, defy exact
theoretical analysis. As such, they form nice candidates for testing the efficacy of an IT-
based algorithm such as LA. LA demonstrated that its performance is comparable to that
of SA, which is a well-known meta-heuristic. We also identified and analyzed a stopping
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criterion for the LA algorithm. Although extensive tests on other domains will be required
before drawing definitive conclusions about the effectiveness, our empirical results indicate
that LA appears to be a suitable candidate for solving large-scale discrete-optimization
problems using AI- and IT-based paradigms.

The LA algorithm enjoys some properties that distinguish it from other meta-heuristics.
It does not require a starting solution; also, it has a natural stopping criterion. On the
downside, it admittedly has a significant memory burden. Like other meta-heuristics, it is
computationally intensive, but this is less of an issue with the increasing power of computers,
which has given birth to the field of information technology.

Our empirical tests were geared towards stochastic domains of interest in the industry,
but the algorithm could be also used for solving traveling-salesman-type problems and
facilities-designing problems. This may form an interesting avenue for further research.
Also, the rate of its convergence and computational complexity were not analyzed, and
these are important topics for future research.
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APPENDIX

Appendix A. EMSR

The Expected Marginal Seat Revenue (EMSR) rule of Belobaba [5] has its origins in the
rule of Littlewood [31]. It forms a very simple heuristic rule that works very efficiently for
seat-allocation. Let n denote the number of fare classes. Also, our numbering scheme will
imply that if i > j, fi > fj . Let S(i, j) denote the number of seats to be protected from
class j for higher class i. Then according to Littlewood’s rule:

Pr(Xi > S(i, j)) =
fj

fi
, for j = 1, 2, . . . , n− 1, i = j + 1, j + 2, . . . , n, (1)

where Xi denotes the expected number of requests that will arrive for class i in the total
booking horizon. Using the demand-arrival rates and probabilities, one can compute the
values of S(i, j) via Equation (1). Then, the value of x(j), the booking limit for the jth
fare class, is given as:

x(j) = C −
∑

i>j

S(i, j).

Appendix B. Proof of Lemma 1

Proof The proof will be by induction. We will first prove that the result is true for
n = 1. Since p1(i, a) = 1/|A(i)|, for all (i, a), and since no updating occurs when n = 1, the
quantities stay in the interval ]0, 1[ (i.e., open interval between 0 and 1).

Let us assume that the result is true when n = m. Hence pm(i, a) ∈ (0, 1) for all (i, a)
pairs. There are three possible types of updates: Case 1 (update in Step 4a), Case 2 (update
in Step 4b), and Case 3 (update in Step 5). We consider these on a case-by-case basis.
Case 1: (Step 4a update) Note that µ ∈]0, 1[. Here:

pm+1(i, a) = pm(i, a)[1− µ{B(i, x(i))−B(i, a)}].
Since B(i, x(i)) > B(i, a), we have that µ{B(i, x(i)) − B(i, a)} lies in the interval ]0, 1[,
which implies that [1 − µ{B(i, x(i)) − B(i, a)}] lies in the interval ]0, 1[. Then, since both
pm(i, a) and [1−µ{B(i, x(i))−B(i, a)}] lie in the interval ]0, 1[, pm+1(i, a), too, must lie in
the interval ]0, 1[ for this update.
Case 2: (Step 4b update) Note that each of the following four quantities lie in the interval
]0, 1[: µ, [B(i, a)−B(i, x(i)], pm(i, x(i)), and 1/[|A(i)| − 1]. Hence, their product must also
lie in the open interval ]0, 1[. Let us denote the product by L. Then,

pm+1(i, a) = pm(i, a) + L(1− pm(i, a))
< pm(i, a) + (1− pm(i, a))
= 1

The above implies that pm+1(i, a) < 1. Also,

pm+1(i, a) = pm(i, a) + L(1− pm(i, a))
> 0 (note that pm(i, a) > 0 and L > 0).
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From the above, pm+1(i, a), for this update, must lie in the interval ]0, 1[.
Case 3:(Step 5 update) From the analysis in Step 4a and Step 4b, we have that for a 6= x(i),
pm+1(i, a) is strictly greater than 0. Then from Step 5, it is clear that: pm+1(i, x(i)) is less
than 1. To show that pm+1(i, x(i)) is strictly greater than 0, we need to express Step 5 in
the following form.

pm+1(i, x(i)) = pm(i, x(i)) + D, (2)

where the sign of D depends on the updates that occur in Steps 4a and 4b. We will now set
up a general expression for D. Let us define S1 to be the set of values that were updated
in the mth iteration using Step 4a, and S2 to be the set of values that were updated in the
mth iteration using Step 4b. Then:

D =
∑

a∈S1

µ[B(i, x(i))−B(i, a)]pm(i, a)−
∑

a∈S2

µ[B(i, a)−B(i, x(i))]pm(i, x(i))
1− pm(i, a)
|A(i)| − 1

.

(3)
Note that with this expression for D, Equation (2) is equivalent to Step 5. Now, if D ≥ 0,
then from Equation (2), we have that:

pm+1(i, x(i)) ≥ pm(i, x(i)) > 0,

and hence pm+1(i, a) is strictly greater than 0. However, if D < 0, some more work is
needed. Let us define L′ as follows:

L′ = µmax
a∈S2

[B(i, a)−B(i, x(i))]max
a∈S2

[1− pm(i, a)].

Then, by its definition, 0 < L′ < 1.
Now,

D =
∑

a∈S1

µ[B(i, x(i))−B(i, a)]pm(i, a)

−
∑

a∈S2

µ[B(i, a)−B(i, x(i))]pm(i, x(i))
1− pm(i, a)
|A(i)| − 1

≥ −
∑

a∈S2

µ[B(i, a)−B(i, x(i))]pm(i, x(i))
1− pm(i, a)
|A(i)| − 1

= −µpm(i, x(i))
∑

a∈S2

[B(i, a)−B(i, x(i))]
1− pm(i, a)
|A(i)| − 1

≥ −µpm(i, x(i))max
a∈S2

[B(i, a)−B(i, x(i))] max
a∈S2

[1− pm(i, a)]
∑

a∈S2

1
|A(i)| − 1

= −pm(i, x(i))L′
1

|A(i)| − 1

∑

a∈S2

1

> −pm(i, x(i))
1

|A(i)| − 1

∑

a∈S2

1 (since L′ > 0)

> −pm(i, x(i)) · 1
|A(i)| − 1

max


 ∑

a∈S2

1
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= −pm(i, x(i)) · 1 (since max |S2| = |A(i)| − 1).

Thus, D > −pm(i, x(i)), which implies that pm(i, x(i)) + D > 0. Then, from Equation (2),
pm+1(i, x(i)) > 0.

Appendix C. Proof of Theorem 1

Proof It follows from Lemma 1 that any pk(i, a) is a probability. Note that in any iteration,
for any given j, where j = 1, 2, . . . , I, either x(j) = x∗(j) or else x(j) 6= x∗(j). After the
optimal solution is struck, since we are maximizing the objective function value,

B(i, x∗(j)) ≥ B(i, x(j))

for every x(j) 6= x∗(j). Without loss of generality let us assume j to be i.
If x(i) 6= x∗(i), then since B(i, x∗(i)) ≥ B(i, x(i)), pk(i, x∗(i)) will be updated in Step 4b,
and hence pk+1(i, x∗(i)) ≥ pk(i, x∗(i)).
If x(i) = x∗(i), then the update for pk(i, x∗(i)) is in Step 5. Furthermore, no value will be
updated in Step 4b. Hence, we have that S2 in (3) will be an empty set. This implies that
D > 0. Therefore from (2), we have that pk+1(i, x∗(i)) > pk(i, x∗(i)).
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