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Abstract

This paper presents an overview of foundational concepts and techniques used in metrology
of form errors such as straightness, flatness, circularity, sphericity, and cylindricity. While there
exists a significant body of literature on form-error metrology, to the best of our knowledge, no
review paper has been written on this topic. Our aim here is to (i) present a unified view of
the mathematical foundations of form-error metrology and (ii) to uncover the relative strengths
and weaknesses of a wide spectrum of techniques from the literature. Our analysis concludes

with a discussion of opportunities for future research.
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INTRODUCTION

Our goal in this paper is to present a survey of the measurement techniques employed for surface
metrology features belonging in particular to the class known as form errors. Examples of such fea-
tures include straightness, flatness, circularity, sphericity, and cylindricity. Coordinate Measuring
Machines (CMMs) are widely used in the industry for automated form-error measurement. The
least-squares technique, which was one of the first techniques to have been developed for form-error
measurement, is still widely used in most industrial CMMs. Although, a number of more sophisti-
cated and powerful techniques have now appeared in the literature, to the best of our knowledge,
no survey paper has been written till date that analyzes the plethora of techniques now available
for form-error measurement.

We note at the very outset that in order to keep the scope of this survey manageable, we limit
our attention to form errors (other types of surface errors include waviness and roughness) and to
techniques that can be used with CMMs. Alternatives to CMMs, e.g., vernier callipers, which are
hand-held, or laser trackers, which generate voluminous amounts of data, are not covered. We also
do not cover in this survey issues related to optimal sample sizes, distributions, or other statistical
issues related to form-error measurement.

Our overall objective here is to present an overview of techniques presented in the literature for
analyzing form errors. This survey covers a vast spectrum of techniques and identifies two broad

groups (classes), namely algebraic and computational-geometry-based, into which the techniques



surveyed can be classified. The algebraic methods can be further divided into two sub-groups:
white-box (model-based) and blackbox (model-free). A key goal is to highlight differences and
similarities in the various form-error-computation methods developed in the literature. White-box
and black-box methods rely on algebraic properties of mathematical functions constructed from
abstractions of the measurement processes. White-box methods make use of the closed forms of the
underlying functions and analytical-optimization techniques, while black-box methods use numeric
values of the functions and computational-optimization techniques. In contrast to white-box and
black-box methods, computational-geometry methods use geometric properties of the underlying
functions to compute form errors.

Another goal here is to present a unified view of the mathematical foundations of this important
topic. With this in mind, we characterize form errors as functions of vector functions, e.g., the
Euclidean norm (used in least-square methods), the max norm (used in minimax methods), and
the span semi-norm (used in minimum zone methods). In addition, we highlight the relationship
between the minimum zone and the least-squares approaches (Gota and Lizuka, 1977) and the same
between normal and vertical deviations (Murthy and Abdin, 1980; Shunmugam, 1987a).

It is hoped that new research ideas will be stimulated from reading this survey. The rest of this
article is organized as follows. The following section provides a brief discussion of the mathematical
foundations of this subject. The sections entitled “White-Box Methods,” “Black-Box Methods,”
and “Computational Geometry Techniques” discuss white-box, black-box, and computational geo-
metric techniques respectively. The final section concludes this survey with a discussion of possible

topics for future research.
MATHEMATICAL FOUNDATIONS

In this section, our goal is to provide an overview of the mathematical foundations of the science
underlying form-error measurement. In the first subsection, we define reference forms (profiles) and

form deviations, while in the second, we define norms and form errors.
Reference forms and form deviations

To define the form (or profile) error, one first needs to define the reference form. For straight-



ness error, the reference form is an imaginary perfect straight line. The same for flatness, circularity
(roundness), sphericity, and cylindricity error is a perfect plane, circle, sphere, and cylinder, re-
spectively. The reference form is constructed using the data collected from the surface of the part
being inspected. Throughout this paper, (z;, s, z;) will denote the ith data point’s coordinates in
the z, y, and z axis. The form error is generally a function of the deviations from the reference
form.

Straightness deviation: Let y = max + ¢ denote the straight line in two dimensions, where m and
c are the parameters of the equation, i.e., the defining parameters. The vertical deviation of a
point, (z;,y;), on the edge from the reference form will be given by: e} = y; — (mz; + ¢), where
the superscript v stands for vertical. This is the distance (deviation) along the Y-axis. The normal

deviation of the same point from the reference edge is:
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where the superscript n stands for normal. It is easier to minimize vertical deviations rather than
normal deviations, via the well-known least-squares method. This is the reason for their popularity
in commercial software programs. But the normal deviations measure the deviations correctly (ISO,
1983; ANSI: Dimensioning, 1995; ANSI: Definitions, 1995). Unfortunately, normality introduces
non-linearity in the definition of error thereby complicating its analysis.
Flatness deviation: The equation of a plane in three dimensions is defined as: z = mz + ly + c.

Then the normal deviation of any sampled point, (x;,y;, 2;), from the reference plane is given by
n % — (mx+ly; + ¢
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and the vertical deviation (distance) is given by: e} = z; — (mx; + ly; + ¢), which is measured along
the Z-axis.

Circularity deviation: A perfect circle is typically defined by: (z —a)? + (y —b)? = R? if R denotes
the radius of circle and the coordinates of the circle’s center are: (a,b). The defining parameters

of the equation of a circle are thus: a, b, and R. For circularity, the deviation of interest is called



the radial deviation, which is measured from a given point along the radius to the circle’s center.

Hence the radial deviation for a point, (z;,v;), is: ¢; = /(x; — a)2 + (y; — b)2 — R, in which the
square-rooted term represents the distance from the circle’s center to (x;,y;).

Sphericity deviation: The equation of a sphere is: (x — a)? + (y — b)? + (2 — ¢)? = R?, where R
is the radius of the sphere and the sphere’s center is: (a,b,c). The radial deviation for spheric-

ity, which is an extension of the same for circularity to three dimensions, is defined as: e; =

V(zi —a)?+ (y; — b)2 + (2; — ¢)2 — R. The defining parameters of the equation of a sphere are
thus: a, b, ¢, and R. In the deviation, the square-rooted term is the distance from (z;,y;, 2;) to the
center of the sphere.

Cylindricity deviation: The equation of a cylinder (Gosavi and Phatakwala, 2006), whose radius is
R and whose axis is defined by: (z—u)/m = (y—v)/l = (z—w)/k, is (x—mt—u)?+(y— It —v)>+ (2 —
kt—w)? = R? where t = ((xz —u)m + (y — v)l + (z — w)k) /(m?+1%2 +k?). The defining parameters

of the equation are: [, m, k, u, v, w, and R. The deviation of the ¢th point on a real cylinder from a

perfect cylinder can then be defined as: e; = v/(z; — mt; — u)2 + (y; — lt; —v)2 + (2; — kt; — w)% —
R, where the square-rooted term is the normal distance from a point, (z;,y;, z;), on the surface of

the cylinder, to the axis of the cylinder.
Norms and form errors

The deviation vector, €, is defined as the vector of all the deviations, i.e., € = {e1,ea,...,e,}, if
n measurements are made. There are three commonly-used measurement criteria, which use norms
or semi-norms of the deviation vector (see any standard text on vector algebra for definitions of
norms and semi-norms). They are: the Euclidean norm, the max (or maximum) norm, and the

span semi-norm.

Euclidean norm: The Euclidean norm of the deviation vector € is defined as: ||e]]o = /> 1, €7.
When the Euclidean norm of the deviation vector is minimized to obtain values for the defining
parameters of the reference surface, the surface obtained is the so-called “least-squares” surface,

which is used in most CMMs for many features.



Max norm: The max (or maximum) norm or the Chebyshev norm of the deviation vector € is
defined as: ||€]|oc = max; |e;|, where |z| denotes the absolute value of 2. When the max norm is

minimized, one obtains the so-called “minimax” surface.

Span semi-norm: The span semi-norm, or zone, is the difference between the maximum and

the minimum of the deviations. It is defined as:

sp(€) = (mzax ¢; — min ;) = ]mzax eil + ]miin eil. (3)
In (3), for the second equality to hold, it is assumed that the set of deviations contains both positive
and negative signs. When the zone is minimized to obtain values for the defining parameters of the
reference surface, the surface obtained is the so-called “minimum-zone” surface. The associated
error is called the zone error, and according to (ISO, 1983) and (ANSI: Dimensioning, 1995; ANSI:
Definitions, 1995) is the true error. Hence, this criterion is of critical importance in form-error

metrology.

Form error: The form error is a function of the deviation vector. It is important to note that the
defining parameters of the reference surface are not always computed by minimizing the zone of the
deviation vector. However, after the defining parameters of the reference surface are determined,
i.e., the reference surface is determined, the form error is declared to equal the zone of the deviation
vector. The question that now arises is: why would one use some criterion other than the zone
to determine the defining parameters, but subsequently use the zone to compute the form error?
The answer is: Although, one uses the zone of the deviation vector to compute the form error, it is
usually easier to use other criteria, e.g., the Euclidean norm, to compute the defining parameters
of the reference surface. That is, one performs an optimization with a surrogate but an imprecise
objective function, but after the optimization is performed, the objective function value is computed
with respect to the true objective function, i.e., the zone. Obviously, this is done only if there is a
strong motivation to use an imprecise objective function during the optimization. It is indeed the

case that in form-error metrology, the correct objective function (the zone) is algebraically complex



and not easily optimizable. The Euclidean norm on the other hand can be optimized more easily,
and is hence popular. In general, the procedure of form-error estimation is a three-step procedure

described next.

Step 1: Let (x;,y;) or (z;,y;,2;) fori = 1,2,...,n denote the data for the n samples gathered from
the surface to be measured. Determine the values of the defining parameters of the reference
surface that minimize a pre-defined function of the deviations (the Euclidean norm, the max

norm, or the zone) using an algorithm.
Step 2: Use the defining parameters to calculate the deviations.

Step 3: Compute the zone of the vector of deviations and declare the zone to be the form error.

In this three-step procedure, there are a number of factors, and each of them introduces an error
that will be called a bias. The first factor arises from the fact that although there is an infinite
number of points on the actual surface, we use only a finite sample. This is called the sampling bias.
This issue is beyond the scope of this paper, but we refer the interested reader to papers that study
it in detail: (Badar et al., 2003; Dowling et al., 1997; Namboothiri and Shunmugam, 1999; Traband
et al., 2004; Kim and Raman, 2000; Kurfess and Banks, 1995; Obeidat, 2008; Gilbert et al., 2009).
The second factor, discussed above, arises when the function used in Step 1, for finding the defining
parameters, is not the zone. Furthermore, in the case of straightness and flatness, using vertical
distances in Step 1 but normal deviations in Step 2 can lead to an additional bias. Finally, a third
source of bias can be traced to machine-measurement error. We now review the three classes of

methods alluded to earlier in the first section.
WHITE-BOX METHODS

For the most part, white-box methods develop a surrogate objective function that can be opti-
mized using well-known optimization techniques which guarantee convergence. Of course, the bias
in these methods arises out of the use of an imprecise objective function. A major strength of these
methods is their robustness and a reduced computational burden. Robustness arises out of the use

of provably convergent optimization techniques, many of which also have a computational burden



lower than that of black-box methods that we will discuss later. In this section, we describe a
wide spectrum of white-box methods described in the literature. We begin with the most popular

white-box method.
The least-squares method

The method used to minimize the Euclidean norm of the deviation vector is often called the
least-squares method or ordinary least squares or regression. Because it exploits the closed form,
the least-squares method is considered to be white-box.

Consider straightness using vertical distances. Step 1 of the generalized procedure minimizes
the Euclidean norm, i.e., determines m and ¢ to minimize Y%, (y; — ma; — ¢)*. The defining
parameters can be determined by solving simultaneously the following two linear equations in

which the unknowns are m and c:

n n
Zyi:mZxH—nc. (4)
i=1 i=1

n n n
inyi:mZa:%—i—cZaji. (5)
i=1 i=1 i=1

From the values of m and ¢, one computes the deviations via Equation (1), and then the form error
via Equation (3).

The computational elegance of Equations (4) and (5) makes this method attractive for commer-
cial software; the method is robust and all it needs is an algorithm for solving linear equations. The
weakness is that the form error is usually over-estimated, which can be attributed to two sources of
bias, which are: (i) the use of the Euclidean norm — and not the zone — as the objective function,
and (i) the use of vertical distances — and not normal distances — in the objective function.

Step 1 in flatness measurement involves finding m, [, and ¢ to minimize

v (o —maxy —ly; — c)2 . Then the following equations are solved to obtain m, [, and c:

n n n
Zzi = mel —I—lZyi + nc,
i=1 i=1 i=1



n n n n

Z@-zi = mZx? —{—lZmiyi + chi, and

i=1 i=1 i=1 i=1
n n n n
Yoyizi=mYy wiyi+1Y yi ey ui
i=1 i=1 i=1 i=1

One then computes the deviations at each point using Equation (2), and then the form error via
Equation (3).

The least-squares approach for flatness and straightness using vertical distances can be mod-
eled as linear least-squares, which have a straightforward solution. This does not generalize to
circularity and sphericity the functions of which are non-linear. A widely-cited formula for cir-
cularity is (Whitehouse, 2002): a = 2#, b= 2#, and R = w This requires
data from equally-spaced points, i.e., points which have an equal angular spacing. A large number
of researchers have worked in the area of developing least-squares-based methods for solving the
circularity problem (Chaudhuri and Kundu, 1993; Cooper, 1993; Takiyama and Ono, 1989; Guu
and Tsai, 1999).

For sphericity, a formula analogous to the one above which also needs equally-spaced data is:

n ) n ) n ) n 2.2, .2
o = 2%im™ p — 9duin¥  9dini i apq R = Zuim VIRV
’ n ’ n n

n

, . Least-squares solutions and
other approximations for cylindricity have been covered in the literature (Marshall et al., 2001;
Shunmugam, 1986; Murthy, 1982). For least-squares problems, gradient methods of the Gauss-
Newton type (Forbes, 1989) and Levenberg-Marquardt (Shakarji, 1998) type have been recom-

mended by NPL (UK) and NIST (USA), respectively.
Mathematical programming methods

To the best of our knowledge, Murthy and Abdin (1980) were the first to advocate the mini-
mization of the zone in form-error metrology. Also, they used normal distances in measurement of
straightness and flatness. Chetwynd (1985) first proposed the use of linear programming methods
to engineering metrology. His approach was aimed at minimizing the zone using vertical distances

in straightness and flatness. For straightness, the linear program (LP) of Chetwynd (1985) is:

Minimize h subject to h > 0,



mx;+c+h>y Vi, and mx;+c—h<vy Vi

For flatness, the corresponding LP is: Minimize h subject to h > 0,
mx; +ly; +c+h >z Vi, and mz; +ly; +c—h <z Vi

Wang (1992) sought to use the correct distance, i.e., the normal distance, but minimized the max
norm. His remarkable formulation resulted in the following non-linear program, in fact, a con-
strained quadratic program (QP) which was solved exactly via sequential quadratic programming
(Bazaraa et al., 1993):

Minimize h subject to h > 0,

d; <h Vi, where

— (mz; +¢) zi — (mx; + ly; + ¢)

andd-:yi
Z V14 m? Vi+m?+12

Although the objective function in the formulation is linear, the constraints are quadratic which

for flatness.

for straightness and d; =

makes it a QP. The step size in the optimization algorithm was determined using an augmented
Lagrangian. He also minimized circularity and cylindricity using the same strategy and provided
computational evidence of outperforming the least-squares method. Lin et al. (1995) also used
sequential quadratic programming in form-error estimation.

Gass et al. (1998) presented a somewhat distinctive approach for handling the non-linearity
in circularity and sphericity. They used a surrogate objective function which can be optimized
via linear programming. They also provided encouraging computational experience which shows
that their approach approximates the true error. We now describe their approach for circularity.

Essentially, the mathematical program they employ is:

Minimize max |M;| — min |M;| where M; = (z; — a)? + (y; — b)* — R2.
2 (2

Note that the ith component of the true deviation vector in circularity is \/(z; — a)? + (y; — b)2—R.

Clearly, M; = z? + y? — 2x;a — 2y;b — p in which p is defined as: p = R? — a? — b%. However, the

10



surrogate, M;, used above, leads to an elegant LP. Then, the mathematical program given above

becomes: Minimize h subject to h > 0
h>a? 4 y? — 2xa — 2yb—p Vi,

—h < a? +y} —2xi0—2yb—p Vi

In the above, the decision variables are h, a, b, and p. When the LP is solved, the values of a and b
are used in the definition of p to determine the value of R. A simple extension exists to sphericity
using: M; = (z; — a)® + (y; — b)* + (2 — ¢)* — R*.

Several other researchers have used mathematical programming in the computation of form
error. Cheraghi et al. (1996) and Weber et al. (2002) developed a linear approximation of the
objective function using Taylor’s series. Their approach required a least-squares solution in the
first phase, and in the second phase, the solution of an LP. A non-linear programming approach
in which the objective function was exploited to derive a feasible search direction (Wang et al.,
2001, 1999) along with convergence guarantees to local optima. Ventura and Yerelan (1989) also
developed a non-linear optimization procedure to solve the circularity problem. Prakasvudhisarn
et al. (2003) use support-vector regression that employs mathematical programming for minimizing

the zone.
Linearization

A large number of linear approximations (also called limacon approximations) to non-linear
features have been devised in the literature (Chetwynd, 1979; Murthy, 1986; Shunmugam, 1986;
Landau, 1987; Yerelan and Ventura, 1988; Lai and Chen, 1996). These approximations develop a
linear surrogate for the non-linear feature. We now describe them for circularity and sphericity.
Circularity: For circularity, the polar coordinates (7;,6;) and the Cartesian coordinates, (z;,v;),
share the following relation: x; = r;cos;, y; = r;sinb;, r; = \/w? + yi?, and 0; = tan~! (y;/x;) .
The radial deviation at any point can be expressed approximately using the following linearized

equation e; =~ r; — (R+acosf; +bsin6;), where R denotes the circle radius and (a, b) is the center.

11



The power of this linearization can be exploited by using it in a least-squares method in which one
seeks to minimize >, 612. There will be three unknowns, R, a, and b, in the following set of linear

equations, which have to be solved simultaneously:
n n n
Zri =nR+ aZcosHi + szinHi.
i=1 i=1 i=1

ricosf; =R cosbi+ad cos’b; +b sinb;cosb;.
> ) >

i=1 i=1 i=1 i=1

n n n n
Zm sinf; = RZsinei + aZsinHicosei + I)Z:sin2 0;.
i=1 i=1 i=1 i=1

Sphericity: For sphericity, one can use spherical cooridinates: (r;, 0;, ¢;), whose relationship with

Cartesian coordinates, (z;,y;, z;), is defined below:

. 5
ri = \/m, 0; = tan™? <i/;> , and ¢; = cos™ ! (;) .

(3 7

The radial deviation is: e; ~ r; — (R + acos ¢; cos 0; + bcos ¢; sin 0; + csin ¢;), where the sphere’s
center is (a,b,c) and the radius is R. For cylindricity, see Shunmugam (1986) for an analogous

approximation.
Chebyshev approximations

A method that minimizes the max norm, i.e., any “minimax” method, in practice outperforms
the least-squares method. As a result, the minimax criterion has attracted considerable attention.
Chebyshev approximations of a function (see any standard text on numerical analysis, e.g., Ral-
ston and Rabinowitz (2001)) can be used to determine a minimax approximation of the function.
Loebritz (1993) is one of the first works to have used this approximation. Dhanish and Shunmugam
(1991) used a Chebyshev approximation in an iterative algorithm for straightness, flatness, circu-
larity, sphericity, and cylindricity. They develop an approach in which one begins with a subset of
the data and modifies the data set progressively. Chatterjee and Roth (1997) present a minimax
algorithm for straightness and flatness. Fukuda and Shimokohbe (1984) used a minimax approx-

imation to minimize the zone. Grinde and Ventura (1994) use the minimax criterion for center
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estimation in sphericity. Gosavi (1995) used a rational function Chebyshev approximation (Press
et al., 1992) using the second algorithm of Remes (Ralston and Rabinowitz, 2001) for straightness,

flatness, and circularity.
BLACK-BOX METHODS

In contrast to white-box methods which employ analytical properties of the objective function,
black-box methods treat the objective function as a black box of which only numeric values are
of interest. Consequently, black-box methods do not rely on any specific property of the objective
function, and, in principle, can work on any objective function. Hence the bias that arises from
approximating the objective function, which is often present in white-box methods, is non-existent
with black-box methods. Unfortunately, black-box methods are (i) not guaranteed to converge to
global optima and (ii) may require a large number of function evaluations (and hence a long time).
It is to be noted, however, that with the increasing power of computers, the latter point does not
pose a serious challenge nowadays.

A large number of computational methods are available in the literature, which can be used
in form-error metrology. Some of the well-known ones are: the Nelder-Mead simplex procedure
(Nelder and Mead, 1965), the Hooke-Jeeves procedure (Hooke and Jeeves, 1961), derivative-based
methods, and meta-heuristics, e.g., genetic algorithms, simulated annealing, and tabu search. The
Nelder-Mead approach, also called flexible polygon search, has been exploited extensively (Murthy
and Abdin, 1980; Kanada and Suzuki, 1993; Kanada, 1995; Damodarasamy and Anand, 1999).
Elmaraghy et al. (1990) employed a Hooke-Jeeves search and Lai et al. (Lai et al., 2000) make
use of a genetic algorithm. Derivative descent has been used in white-box methods (Cardou et al.,
1972; Zhu et al., 2003) and black-box methods (Gosavi and Phatakwala, 2006).

In the Nelder-Mead algorithm, one starts with a simplex, which is essentially a convex hull of
(D + 1) points selected randomly from the solution space, where D denotes the number of defining
parameters. The best point in the simplex, i.e., the point with the lowest function value, and the
worst (with the highest function value) point are identified. Then the centroid of the points in the
simplex other than the worst point is computed. A so-called reflection is performed, and a new

vertex is generated. If the new vertex is better (has a lower function value) than the worst vertex
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in the simplex, the latter is replaced by the new vertex. Although it is of a heuristic nature, the
algorithm works well for a small value for D

In steepest gradient descent, the iterative algorithm begins at an arbitrary solution. Let the
solution for the ith defining parameter in the pth iteration of the algorithm be denoted by ¢!, and
the vector ¢? = {¢},¢b,...,q}}. The heart of the algorithm is as follows:

¢t — 85(')
q;

, foralle=1,2,...,D,
q=q?

where f(.) is usually the zone. The algorithm is terminated by checking whether the gradient norm

2
<€,
g=qP

where e denotes the stopping tolerance, which is generally set to a small number.

is less than a stopping tolerance, i.e., if

e

=0

Black-box methods can be used on complex features, but tend to be slower than white-box
methods. Also, some researchers are uncomfortable with using them, because they do not ex-
ploit analytical properties, relying on numeric values instead. Computational-geometry methods
carry the promise of a considerably-reduced computational time, and hence form the most exciting

methods on the frontier of form-error metrology. We now present a review of these methods.
COMPUTATIONAL GEOMETRY TECHNIQUES

A number of researchers have used computational geometry (see e.g., Preparata and Shamos
(1985) for a textbook) for form-error computation. A central idea in such methods is to construct at
least two surfaces which (i) enclose within them all the measured points and (ii) have the minimum
separating distance; in case of straightness and flatness, the two surfaces are parallel straight
lines and planes, respectively, in case of circularity and sphericity, the two surfaces are concentric
circles and spheres, respectively, and finally for cylindricity, the surfaces are co-axial cylinders with
different radii. Most of the algorithms in this class are iterative, and start with a good solution,

which is progressively improved until the optimal or near-optimal solution is obtained. These
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algorithms generally use the so-called Voronoi diagrams and employ the theory of convex sets. A
positive aspect of these algorithms is that most of them attempt to minimize the zone.

Elzinga and Hearn (1971) is an early work that presents a fundamental geometry method for
a minimax problem in location theory. Traband et al. (1989) used a convex-hull method that
can be applied for measuring flatness. Huang et al. (1993) developed a so-called Control Plane
Rotation Scheme for minimum zone evaluation. Carr and Ferreira (1995) developed a procedure
that searches, by rotation, the direction vector at which two parallel planes (or straight lines
for straightness error) have the minimum distance. Damodarasamy and Anand (1999) embed a
computational-geometry mechanism within a flexible polygon search (Nelder and Mead, 1965), and
produce some remarkable computational results. Shunmugam (1987b) has developed a “median
search technique” that constructs in an iterative fashion a so-called median plane as the reference
plane and has shown that when the defining parameters of this plane are used in calculating the
form error, the latter is smaller than that obtained with the least-squares plane. Huang (1999)
developed an approach to determine straightness by using points on the vertices of the convex hull
of the measured points. Rajagopal and Anand (1999) developed a “selective data-partitioning”
technique for determining circularity error. Lai and Wang (1988), Le and Lee (1991) and Kim
et al. (2000) used a Voronoi-diagram technique, which employs the concepts of convex hull, to
compute circularity. Roy and Zhang (1992) formulated a technique that considers all possible pairs
of concentric circles for measuring the circularity error. Etesami and Qiao (1990) provide a Voronoi
diagram to determine the centers of the maximum inscribed and the minimum circumscribed circles.
Roy and Xu (1995) used a method that develops co-axial cylinders coupled with Voronoi diagrams
for measuring cylindricity. Cheraghi et al. (2003) developed a procedure that rotates the cylinder
in a fashion such that the circularity error in a projected circle, which can be computed relatively
easily, can be exploited to determine the cylindricity error.

We note that research in computational geometry for form-error measurement is relatively novel
and new, and it is also likely to have a significant influence on this field. As of now, however, most

industrial strength CMMs tend to use algebraic methods. This may change in the future.
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CONCLUSIONS

Form-error computation is a critical function of the quality-control department in any precision-
manufacturing industry. Some textbooks on surface metrology have appeared (Miller, 1962; White-
house, 2002) in the open literature. However, there is no book that deals elaborately with form-error
computation, which is one reason why we felt the need for writing a review. Our review focused
on optimization techniques used in form-error metrology.

Some of the highlights of our findings are as follows. The literature on the measurement tech-
niques is broadly classifiable into two streams, namely algebraic and geometric, and within the
algebraic class, one finds two different sub-classes of techniques, namely white-box and black-box.
The complexity of the correct objective function, i.e., the zone, which is difficult to optimize as
a result, appears to be major source of the approximations that are difficult to avoid. The ap-
proximations appear in developing a surrogate (white-box) or in the technique itself (black-box).
The appeal of a linearization approach became evident because of its ability to make the objec-
tive function more easily optimizable and amendable to linear regression/linear programming. The
black-box techniques, which use this function as it is in the optimization, appear to be of an it-
erative nature may be time-consuming on the computer. It is important to note that reliance on
linear regression (least squares) in commercial CMMs can be traced to the complexity of analyzing
the zone.

An aspect beyond the scope of this paper is that of statistical issues related to sampling.
However, it must be pointed out that statistical issues can play a role in deciding whether it is
worthwhile using normal distances instead of vertical distances (Badar et al., 2003; Shunmugam,
1987a) because of the increased computational time. Also, according to Dowling et al. (1995),
the least-squares method may be safer in practice than the minimum zone error. There is also a
growing body of literature that seeks to use laser trackers for function fitting (see e.g., Yang and
Qian (2008)). Laser trackers gather data for millions of points (point cloud) on the surface of the
part. Sampling becomes very critical as a result, since most metrology algorithms are likely to
become very slow in processing millions of points. Least squares, which requires only additions and

is not of an iterative nature, is likely to fare better in this scenario; however, the approximations it
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introduces are only likely to be amplified.

A number of other issues related to form-error metrology were not covered in this review. We
would like to provide the reader with some pointers in these directions however. Roughness and
waviness form two other types of surface errors, distinct from form errors, and have been discussed
widely in the literature, e.g., Whitehouse (2002) and Raja et al. (2002). An interesting paper on
form-error measurement with traditional instruments such as gauges is Griffith (2002). Sample-
size determination for form-error measurement, i.e., determining the number of data points to be
selected, is a critical issue that has been examined in many papers, e.g., Dowling et al. (1997).
For an understanding of tolerance evaluation in the form-error context, please see Traband et al.
(2004). An interesting paper that considers the distribution of flatness measurements with the aim
of improving fits in assemblies is Berrado et al. (2006). Finally, form errors of complicated surfaces,
e.g., cones, have been covered in Chung and Raman (1999).

We conclude this paper with some directions for future research in form-error metrology that

we believe our review uncovered.

e The combined use of normal distances (as in Wang (1992)) and the zone (as in Chetwynd
(1985)) has not been attempted in the literature and should form an interesting avenue
for future research for all features. This is because the sequential quadratic procedure is

guaranteed to converge to the global optimum (Bazaraa et al., 1993).

e The surrogate-function approach of Gass et al. (1998) could perhaps be exploited in cylin-
dricity. The power of their approach is that the objective function can be optimized by linear
programming for which efficient software programs are available. Linearization (Chetwynd,
1979) is yet another powerful approximation that could be combined with the linear program-

ming approach of Chetwynd (1985) for circularity and sphericity.

e There is a need for developing CMM software based on computational-geometry-based tech-
niques. While software based on linear programming and statistical techniques are readily
available, software for computational geometry have to be tailor-made for the technique at

hand. However, the development of such software programs is likely to increase the usage of
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these techniques in industrial strength CMMs.

e There is an urgent need to study six sigma methodologies that can benefit from improved
form-error metrology. The literature on the interface of surface metrology and six sigma

appears to be scant.
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