
Missouri S & T gosavia@mst.edu

NEURAL NETWORKS AND REINFORCEMENT LEARNING

Abhijit Gosavi

Department of Engineering Management and Systems

Engineering

Missouri University of Science and Technology

Rolla, MO 65409

A. Gosavi
1

Missouri S & T gosavia@mst.edu

Outline

• A Quick Introduction to Reinforcement Learning

• The Role of Neural Networks in Reinforcement Learning

• Some Algorithms

• The Success Stories and the Failures

• Some Online Demos

• Future of Neural Networks and Reinforcement Learning

A. Gosavi
2

Missouri S & T gosavia@mst.edu

What is Reinforcement Learning?

• Reinforcement Learning (RL) is a technique useful in solving

control optimization problems.

• By control optimization, we mean the problem of recognizing the

best action in every state visited by the system so as to optimize

some objective function, e.g., the average reward per unit time

and the total discounted reward over a given time horizon.

• Typically, RL is used when the system has a very large number

of states (>> 1000) and has complex stochastic structure, which

is not amenable to closed form analysis.

• When problems have a relative small number of states and the

underlying random structure is relatively simple, one can use

dynamic programming.

A. Gosavi
3

Missouri S & T gosavia@mst.edu

Q-Learning

• The central idea in Q-Learning is to recognize or learn the

optimal action in every state visited by the system (also called

the optimal policy) via trial and error.

• The trial and error mechanism can be implemented within the

real-world system (commonly seen in robotics) or within a

simulator (commonly seen in management science / industrial

engineering).

A. Gosavi
4

Missouri S & T gosavia@mst.edu

Q-Learning: Working Mechanism

• The agent chooses an action, obtains feedback for that action,

and uses the feedback to update its database.

• In its database, the agent keeps a so-called Q-factor for every

state-action pair. When the feedback for selecting an action in a

state is positive, the associated Q-factor’s value is increased,

while if the feedback is negative, the value is decreased.

• The feedback consists of the immediate revenue or reward plus

the value of the next state.

A. Gosavi
5

Missouri S & T gosavia@mst.edu

Action

Feedback

Simulator
(environment)

RL Algorithm
 (Agent)

r(i,a,j)

a

Figure 1: Trial and error mechanism of RL. The action selected by the RL
agent is fed into the simulator. The simulator simulates the action, and the
resultant feedback obtained is fed back into the knowledge-base (Q-factors)
of the agent. The agent uses the RL algorithm to update its knowledge-base,
becomes smarter in the process, and then selects a better action.

A. Gosavi
5

Missouri S & T gosavia@mst.edu

Q-Learning: Feedback

• The immediate reward is denoted by r(i, a, j), where i is the

current state, a the action chosen in the current state, and j the

next state.

• The value of any state is given by the maximum Q-factor in that

state. Thus, if there are two actions in each state, the value of a

state is the maximum of the two Q-factors for that state.

• In mathematical terms:

feedback = r(i, a, j) + λmax
b

Q(j, b),

where λ is the discount factor, which discounts the values of

future states. Usually, λ = 1/(1 +R) where R is the rate of

discounting.

A. Gosavi
6

Missouri S & T gosavia@mst.edu

Q-Learning: Algorithm

The core of the Q-Learning algorithm uses the following updating

equation:

Q(i, a)← [1− α]Q(i, a) + α [feedback] ,

i.e.,

Q(i, a)← [1− α]Q(i, a) + α

[
r(i, a, j) + λmax

b
Q(j, b)

]
,

where α is the learning rate (or step size).

A. Gosavi
7

Missouri S & T gosavia@mst.edu

Q-Learning: Where Do We Need Neural Networks?

• When we have a very large number of state-action pairs, it is not

feasible to store every Q-factor separately.

• Then, it makes sense to store the Q-factors for a given action

within one neural network.

• When a Q-factor is needed, it is fetched from its neural network.

• When a Q-factor is to be updated, the new Q-factor is used to

update the neural network itself.

• For any given action, Q(i, a) is a function of i, the state. Hence,

we will call it a Q-function in what follows.

A. Gosavi
8

Missouri S & T gosavia@mst.edu

Incremental or Batch?

• Neural networks are generally of two types: batch updating or

incremental updating.

• The batch updating neural networks require all the data at once,

while the incremental neural networks take one data piece at a

time.

• For reinforcement learning, we need incremental neural networks

since every time the agent receives feedback, we obtain a new

piece of data that must be used to update some neural network.

A. Gosavi
9

Missouri S & T gosavia@mst.edu

Neurons and Backpropagation

• Neurons are used for fitting linear forms, e.g., y = a+ bi where i

is the input (the state in our case). Also called adenaline rule or

Widrow-Hoff rule.

• Backprop is used when the Q-factor is non-linear in i, which is

usually the case. (Algorithm was invented by Paul Werbos in

1975).

• Backprop is a universal function approximator, and ideally

should fit any Q-function!

• Neurons can also be used by fitting the Q-function in a piecewise

manner, where a linear fit is introduced in every piece.

A. Gosavi
10

Missouri S & T gosavia@mst.edu

Algorithm for Incremental Neuron

Step 1: Initialize the weights of the neural network.

Step 2a: Compute the output op using

output =

k∑
j=0

w(j)x(j), where

w(j) is the jth weight of neuron and x(j) is the jth input.

Step 2b: Update each w(i) for i = 0, 1, . . . , k using:

w(i)← w(i) + µ[target− output]x(i),

where the target is the updated Q-factor.

Step 3: Increment iter by 1. If iter < itermax, return to Step 2.

A. Gosavi
11

Missouri S & T gosavia@mst.edu

Q-Learning combined with Neuron

We now discuss a simple example of Q-Learning coupled with a

neuron using incremental updating on an MDP with two states and

two actions.

Step 1. Initialize the weights of the neuron for action 1, i.e., w(1, 1)

and w(2, 1), to small random numbers, and set the corresponding

weights for action 2 to the same values. Set k, the number of

state transitions, to 0. Start system simulation at any arbitrary

state. Set kmax to a large number.

Step 2. Let the state be i. Simulate action a with a probability of

1/|A(i)|. Let the next state be j.

Step 3. Evaluate the Q-factor for state-action pair, (i, a), which we

A. Gosavi
12

Missouri S & T gosavia@mst.edu

will call Qold, using the following:

Qold = w(1, a) + w(2, a)i.

Now evaluate the Q-factor for state j associated to each action,

i.e.,

Qnext(1) = w(1, 1) + w(2, 1)j; Qnext(2) = w(1, 2) + w(2, 2)j.

Now set Qnext = max {Qnext(1), Qnext(2)} .

Step 3a. Update the relevant Q-factor as follows (via Q-Learning).

Qnew ← (1− α)Qold + α [r(i, a, j) + λQnext] . (1)

Step 3b. The current step in turn may contain a number of steps

and involves the neural network updating. Set m = 0, where m is

the number of iterations used within the neural network. Set

mmax, the maximum number of iterations for neuronal updating,

A. Gosavi
13

Missouri S & T gosavia@mst.edu

to a suitable value (we will discuss this value below).

Step 3b(i). Update the weights of the neuron associated to action a

as follows:

w(1, a)← w(1, a)+µ(Qnew−Qold)1; w(2, a)← w(2, a)+µ(Qnew−Qold)i.

(2)

Step 3b(ii). Increment m by 1. If m < mmax, return to Step 3b(i);

otherwise, go to Step 4.

Step 4. Increment k by 1. If k < kmax, set i← j; then go to Step 2.

Otherwise, go to Step 5.

Step 5. The policy learned, µ̂, is virtually stored in the weights. To

determine the action prescribed in a state i where i ∈ S, compute

the following:

µ(i) ∈ argmax
a∈A(i)

[w(1, a) + w(2, a)i] .

A. Gosavi
14

Missouri S & T gosavia@mst.edu

Some important remarks need to be made in regards to the algorithm

above.

Remark 1. Note that the update in Equation (2) is the update used

by an incremental neuron that seeks to store the Q-factors for a given

action.

Remark 2. The step-size µ is the step size of the neuron, and it can

be also be decayed with every iteration m

A. Gosavi
15

Missouri S & T gosavia@mst.edu

Backpropagation

• The algorithm is more complicated, since it involves multiple

layers and the threshold functions.

• The algorithm requires significant tuning.

• Incremental version of the algorithm must be used.

A. Gosavi
16

Missouri S & T gosavia@mst.edu

Integration of neural networks with Q-Learning

• In some sense resembles integration of hardware (neural network)

and software (Q-Learning).

• Integration has to be tightly controlled; otherwise results can be

disappointing.

• Mixed success with backprop; Crites and Barto (1996; elevator

case study), Das et al (1999; preventive maintenance used

backprop with great success), and Sui (supply chains) have

obtained great success, but some other failures reported (Sutton

and Barto’s 1998 textbook).

• Piecewise fitting of the function using neurons has also shown

robust and stable behavior: Gosavi (2004; airline revenue

management).

A. Gosavi
17

Missouri S & T gosavia@mst.edu

Toy Problem: Two states and Two actions

Table 1: The table shows Q-factors.

Method Q(1, 1) Q(1, 2) Q(2, 1) Q(2, 2)

Q-factor-value iteration 44.84 53.02 51.87 49.28

Q-Learning with α = 150/(300 + n) 44.40 52.97 51.84 46.63

Q-Learning with Neuron 43.90 51.90 51.54 49.26

A. Gosavi
18

Missouri S & T gosavia@mst.edu

Future Directions

• A great deal of current research in function approximation and

RL is using regression, e.g., algorithms such as LSTD (least

squares temporal differences)

• However, most exciting RL applications in robotics and

neuro-science studies are still using neural networks.

• Support Vector Machines are yet another data mining tool that

have seen some recent applications in RL.

A. Gosavi
19

Missouri S & T gosavia@mst.edu

References

D. Bertsekas and J. Tsitsiklis. Neuro-dynamic programming, Athena,

1996.

R. Crites and A. Barto. Improving elevator performance using

reinforcement learning. In Neural Information Processing Systems

(NIPS). 1996.

T.K. Das, A. Gosavi, S. Mahadevan, and N. Marchalleck. Solving

semi-Markov decision problems using average reward reinforcement

learning. Management Science, 45(4):560574, 1999.

A. Gosavi. Simulation-based optimization: Parametric optimization

techniques and reinforcement learning, Kluwer Academic Publishers,

2009.

A. Gosavi, N. Bandla, and T. K. Das. A reinforcement learning

A. Gosavi
20

Missouri S & T gosavia@mst.edu

approach to a single leg airline revenue management problem with

multiple fare classes and overbooking. IIE Transactions (Special

Issue on Large-Scale Optimization edited by Suvrajeet Sen),

34(9):729742, 2002.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction,

MIT Press, 1998.

A. Gosavi
21

