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Abstract

Bulk-arrival queues with single servers that provide bulk service are widespread in the real

world, e.g., elevators in buildings, people-movers in amusement parks, air-cargo delivery planes,

and automated guided vehicles. Much of the literature on this topic focusses on the development

of the theory for waiting time and number in such queues. We develop the theory for the number

stranded, i.e., the number of customers left behind after each service, in queues of the M/G/1

form, where there is single server, the arrival process is Poisson, the service is of a bulk nature,

and the service time is a random variable. For the homogenous Poisson case, in our model the

service time can have any given distribution. For the non-homogenous Poisson arrivals, due to

a technicality, we assume that the service time is a discrete random variable. Our analysis is
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not only useful for performance analysis of bulk queues but also in designing server capacity

when the aim is to reduce the frequency of stranding. Past attempts in the literature to study

this problem have been hindered by the use of Laplace transforms, which pose severe numerical

difficulties. Our approach is based on using a discrete-time Markov chain, which bypasses the

need for Laplace transforms and is numerically tractable. We perform an extensive numerical

analysis of our models to demonstrate their usefulness. To the best of our knowledge, this is

the first attempt in the literature to study this problem in a comprehensive manner providing

numerical solutions.

Keywords: Queueing; bulk queues; downside risk

1 Introduction

Bulk-arrival, bulk-service systems are ubiquitous in the real world. Elevators in buildings (Chen,

2005) form the commonest example, where a server of a fixed capacity arrives after a random

amount of time to serve a pool of customers. If the capacity of the server that arrives is less

than the number of customers waiting, the server leaves behind some customers. Such customers

are typically referred to have been stranded. A system in which a large number of customers are

frequently stranded can lead to customers becoming displeased with it. Other settings where the

bulk-service queue is found are trains (or people-movers) in amusement parks, cargo-delivering

airplanes, and in the manufacturing setting, where the machine or equipment can serve multiple

units at the same time, e.g., an automated guided vehicle (AGV) that picks up jobs at one machine

to deliver them at another. In an amusement park, excessive delays at the end of the day waiting for

the train are clearly unhelpful to tired parents. In the air-cargo delivery system, stranded mail can

get delayed incurring penalties for the carrier. In a manufacturing system in which AGVs are used

for material handling, inadequate capacity of the AGVs increases lead time and hence inventory.

Finally, in the manufacturing setting, bulk queues are also seen in front of machines where service

is provided simultaneously, e.g., testing centers (Chang et al., 2004) and heat-treatment units.

In many of these systems there tends to be a single server whose capacity is a variable, i.e., the
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service process is of a bulk nature. It is also common to find bulk-arrivals in such systems, e.g., a

family of four arriving together to a station to board a train. The service time, which is the time

it takes for the server to return to pick up customers, is usually a random variable. A typical goal

in the study of bulk queues is the control of the service of the queue, which is a widely studied

topic in non-bulk queues as well; see Teghem (1986) and Ke and Wang (2002). In the models that

we study, we assume the server capacity to be a fixed variable to be optimized. The service time

can have any given continuous distribution if the arrival process is a homogenous Poisson process.

If the arrival process is of a non-homogenous Poisson type, our model will be capable of handling

a discrete random variable for the service time. Our primary goal in this paper is to develop a

distribution for the number left behind when the server leaves. This will be done under a variety of

conditions for the server departure that we describe later. To use the standard notation from the

literature, our models for bulk-arrival, bulk-service queues are of the following forms: Mx
h/Gx/1

and Mx
nh/Gx/1, where Gx denotes a service time that is generally distributed and that the service

is of a bulk (variable) nature, Mx denotes the fact that the arrival process is Poisson and is of bulk

nature, and h and nh denote homogeneous Poisson and non-homogeneous Poisson, respectively.

The server departure is determined by the so-called dispatching rule, which depends on the

system being modeled. Two dispatching strategies that we focus on are: (i) A regular (R) dispatch-

ing strategy in which the server leaves according to its own schedule regardless of the number of

customers waiting. (ii) A holding (H) strategy in which the server is held as long as the number of

customers waiting is less than both of the following: a pre-specified number, B, and the available

capacity of the server; the server departs as soon as the number waiting exceeds either of the two

quantities.

Given a dispatching strategy, one has to additionally account for what happens with the

stranded customers if there are any, i.e., use the appropriate stranding strategy. We focus on

two types of stranding strategies: (i) 0-stranding where customers stranded in their very first at-

tempt leave to get service elsewhere and (ii) ∞-stranding, where the customers stranded never

leave. Additionally, we consider a third type of strategy: (iii) 1-stranding where customers leave

after being stranded twice.
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The literature has studied the problem of bulk queues widely (Bailey, 1954; Miller, 1959; Gaver,

1959; Saaty, 1960; Keilson, 1962; Jaiswal, 1964; Ghare, 1968; Cohen, 1969; Borthakur and Medhi,

1974; Neuts, 1981; Downton, 1986). Mejia-Tellez and Worthington (1994) model the queue length

in bulk-arrival, bulk-service queues. Chen (2005) discusses a fuzzy bulk queue and provides some

interesting examples of cable cars and elevators. Armero and Conesa (2004) model a bulk-arrival

queueing system for the analysis of a make-to-stock production system. Bar-Lev et al. (2007) study

a bulk-service queue with variable batch size for a group testing center that has applications in a

medical testing center. Chang et al. (2004) develop performance measures for finite-buffer bulk-

arrival, bulk-service queues using transform methods. See Medhi (2003) for a formal description of

the bulk-service models and additional references.

Contributions of this paper: We now discuss the gaps in the literature that we seek to fill with

this paper along with our contributions. Firstly, much of the existing literature in bulk queueing is

directed towards estimating the waiting time or number. While this is an important task, our focus

is on developing the distribution of the number stranded, which is an equally important performance

measure for bulk queues. The importance of this measure stems from the fact that when the server

capacity is designed for a bulk queue, the probability of stranding becomes an important design

issue. The probability of stranding more than K customers (where K is a pre-specified number) is

a downside risk for the designer, and the designer is expected to keep this risk under control. To

the best of our knowledge, this paper is the first to address this issue in bulk queueing.

Secondly, a commonly advocated approach in the analysis of bulk queues is the use of the Laplace

transforms. However, these techniques require the computation of the so-called complex zeroes,

which “frequently becomes very challenging” (Thonemann and Brandeau, 1996). We sidestep the

issue of transforms by directly computing the steady-state distribution of the underlying Markov

chain from the elements of the associated semi-Markov kernels; this leads to a numerically tractable

approach. In other words, we provide a computational tool for solving a problem, which, although

theoretically solvable with Laplace transforms, is computationally very challenging.

Finally, our models are developed in the context of a wide array of stranding and dispatching
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strategies (discussed above), which are applicable in real-world systems. Further, we compare the

results of our model with that of a simulation model, which is guaranteed to provide optimal

solutions, in order to demonstrate the practical usefulness of our approach.

The rest of this paper is organized as follows. Section 2 presents the mathematical model

for performance evaluation. Section 3 discusses some structural properties in the context of the

performance evaluation model. Section 4 provides results from computational experiments, while

Section 5 concludes this paper.

2 The semi-Markov kernel model

We begin with some general assumptions about our models: (i) The inter-arrival times of the

customers (customer group) are i.i.d. and the arrival process is either homogeneous or non-

homogeneous Poisson. (ii) The customer group sizes are i.i.d. and assume discrete values. (iii)

The service times are i.i.d. random variables. (iv) The dispatch station has an infinite capacity

of waiting space, making our queue one of infinite waiting capacity. (iv) The holding time of the

server, wherever relevant, does not affect the next service time.

We now present some notation. Let Xm denote the number of customers stranded when the

mth departure occurs, Tm denote the time of the mth departure, and Um denote the number

of customers that arrive in one service period after the (m − 1)th departure. Z will denote the

maximum capacity of the server. Since inter-arrival times, customer-size distributions, and service

times are i.i.d., values of {Um} are i.i.d. They are also independent of {Xm}. Let I = {0, 1, 2, . . . , },
I+ = {1, 2, . . . , }, X = {Xm : m = 0, 1, 2, . . .} and T = {Tm : m = 0, 1, 2, . . .}. Now since for

all m,Tm ≥ 0 and j ∈ I, P{Xm+1 = j, Tm+1 − Tm ≤ t|X0, . . . , Xm; T0, . . . , Tm} = P{Xm+1 =

j, Tm+1 − Tm ≤ t|Xm}, (X,T) is a Markov renewal process (see Kao (1997); pp. 323). If the

system is in state i at the previous departure time, then the probability that the next departure

will occur after t units of time and that the system will be in state j then will be denoted by Q(i, j, t).

Mathematically, Q(i, j, t) ≡ P{Xm+1 = j, Tm+1 − Tm ≤ t|Xm = i }. Q(t) denotes a matrix whose

element in its ith row and jth column is Q(i, j, t). Let P denote the transition probability matrix
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(TPM) of the discrete-time Markov chain underlying the Markov renewal process, and P (i, j)

denote the one-step transition probability of going from state i to state j. The elements of P can

be calculated from Q(t) as follows (see e.g., Kao (1997)): P (i, j) = limt→∞Q(i, j, t). The TPM

of the underlying Markov chains in the semi-Markov kernels will be constructed for homogeneous

Poisson arrivals in subsection 2.1 and for non-homogeneous Poisson arrivals in subsection 2.2. Before

plunging into the mathematical details of the models, we present an overview of the underlying

scheme in semi-Markov kernel models in queueing.

Constructing the kernel: To construct the semi-Markov process (kernel) underlying the queue-

ing system, we view the system only at the departure instants. The time between the departure

instants is determined by the service time. We can construct an discrete-time Markov chain from

the kernel as follows. We use the number stranded to denote the state of the Markov chain. Given

the current state (i.e., the number stranded at current departure), we will develop an expression

that evaluates the probability that the system will occupy any other state at the next departure

instant. This can be accomplished provided one has access to the distribution of the time elapsed

between successive departure instants, i.e., the service time. For more details of this process, the

reader is referred to pages 256-259 of Medhi (2003). This idea will be used in all our models for

the different dispatching and stranding strategies. The transition probabilities of going from one

state to another will depend on the scenario considered, i.e., the holding and dispatching strategy

and whether the arrival process is homogenous or non-homogenous Poisson. Once the transition

probabilities are available, one can use the standard invariance equations (Ross, 2003) to deter-

mine the steady-state (limiting) probabilities of the underlying Markov chain. These steady-state

probabilities will yield the distribution of the number stranded, along with the first and the second

moment.

2.1 Homogeneous Poisson arrivals

Let λ denote the Poisson rate of arrival, A(t) the number of customers that arrive in a time interval

of length t, and L the customer size. Also, L(l) ≡ P(L = l), where l ∈ {1, 2, . . . , Lmax}. Since
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the values of L are i.i.d. and finite, the arrival process at the dispatch station forms a compound

Poisson process allowing us to compute the distribution of A(t) via a recursion (see e.g., Kao (1997);

pp. 73). Using P t
n ≡ P(A(t) = n), and P t

0 = exp(−λt),

P t
n =

λt

n

l∑

j=1

jL(j)P t
n−j , where l = n if 1 ≤ n ≤ Lmax and l = Lmax if n > Lmax. (1)

We begin with the holding strategy and then present the regular strategy as its special case.

2.1.1 Holding dispatching

Dm will denote the available capacity of the server at the mth departure instant. If Dm is greater

than B, a pre-specified number, the server is held until B customers appear; otherwise it leaves with

Dm customers. Let B∗
m = min (B, Dm), and the server departs with B∗

m customers. The server is

held as long as there are (B∗
m − k) (with k > 0) or fewer customers in the queue. However, since

the size of the customer can range from 1 to Lmax, the number of customers waiting at the station

just before the mth departure takes values from: {B∗
m, (B∗

m + 1), (B∗
m + 2),. . ., (B∗

m + Lmax − 1)};
these values can be obtained by adding k, k + 1, k + 2, . . . , Lmax to (B∗

m− k) for k = 1, 2, . . . , Lmax.

Thus when the server departs, since it carries away B∗
m customers, the number stranded assumes

any value between 0 (i.e., B∗
m − B∗

m) and (Lmax − 1) (i.e., B∗
m + Lmax − 1 − B∗

m). To determine

Q(i, j, t), we need to account for the holding time.

Let Sm denote the total number of customers that arrive during the time the server is held

before the mth departure. Let Sn
m denote the total number of customers from the first n groups

that arrive during the time the server is held before the mth departure. Defining P(Sn
m = i) =

∑min(Lmax,i)
k=1 P(Sn−1 = i−k)L(k), with boundary condition: P(S1 = i) = L(i) for i ∈ {1, 2, . . . Lmax},

we can compute the pmf of Sm with: P(Sm = i) =
∑i

n=1 P(Sn
m = i), i > 0. Now, for i < B and

0 < j < Lmax:

Hm(i, j, t) =
B∑

d=i+1

P(Dm = d)

(
d−i−1∑

r=0

P(A(t) = r)Gm(d− i− r, j)

)

+
Z∑

d=B+1

P(Dm = d)

(
B−i−1∑

r=0

P(A(t) = r)G∗
m(d− i− r, j, r)

)
, where
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Gm(k, j) =
∑min (Lmax,(k+j))

n=j+1 L(n)P(Sm = k+j−n) and G∗
m(k, j, r) =

∑min (Lmax,(k+j))
n=j+1+r−B L(n)P(Sm =

k + j − n).

∞-stranding strategy: There are four main cases; also, we define Γk =
∑Z

i=k P(Dm = i).

Case 1: If (j − i) > 0,

Case 1a: If j < Lmax, i < B,

Q(i, j, t) =
∫ t
0

[∑Z+j−i
n=j−i P(A(u) = n)P(Dm = n− j + i) + Hm(i, j, u)

]
dP{Tm+1−Tm ≤ u|Xm = i }.

Case 1b: Else, Q(i, j, t) =
∫ t
0

∑Z+j−i
n=j−i P(A(u) = n)P(Dm = n− j + i)dP{Tm+1 − Tm ≤ u|Xm = i }.

Case 2: If (j − i) ≤ 0, (i− j) ≤ Z, and j 6= 0,

Case 2a: If j < Lmax, i < B,

Q(i, j, t) =
∫ t
0

[∑Z+j−i
n=0 P(A(u) = n)P(Dm = n− j + i) + Hm(i, j, u)

]
dP{Tm+1−Tm ≤ u|Xm = i }.

Case 2b: Else, Q(i, j, t) =
∫ t
0

∑Z+j−i
n=0 P(A(u) = n)P(Dm = n− j + i)dP{Tm+1 − Tm ≤ u|Xm = i }.

Case 3: If (j − i) ≤ 0, (i− j) ≤ Z, and j = 0,

Case 3a: If i < B,

Q(i, j, t) =
∫ t
0

[∑Z+j−i
n=0 P(A(u) = n)Γn−j+i −

∑Lmax−1
n=1 Hm(i, n, u)

]
dP{Tm+1 − Tm ≤ u|Xm = i }.

Case 3b: Else, Q(i, j, t) =
∫ t
0

∑Z+j−i
n=0 P(A(u) = n)Γn−j+idP{Tm+1 − Tm ≤ u|Xm = i }.

Case 4: If (j − i) < 0 and (i− j) > Z, then Q(i, j, t) = 0.

0-stranding strategy:

Case 1: If j > 0,

Case 1a: If j < Lmax,

Q(i, j, t) =
∫ t

0




Z+j∑

n=j

P(A(u) = n)P(Dm = n− j)−Hm(0, j, u)


 dP{Tm+1 − Tm ≤ u|Xm = i }.

Case 1b: Else, Q(i, j, t) =
∫ t
0

∑Z+j
n=j P(A(u) = n)P(Dm = n− j)dP{Tm+1 − Tm ≤ u|Xm = i }.
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Case 2: If j = 0,

Q(i, j, t) =
∫ t
0

[∑Z
n=0 P(A(u) = n)Γn −

∑L−1
n=1 Hm(0, n, u)

]
dP{Tm+1 − Tm ≤ u|Xm = i }.

2.1.2 Regular dispatching

The relevant expressions for regular dispatching, where the server is not held but leaves after

the service is complete, can be developed from those for the holding (dispatching) case by setting

Hm(., ., .) = 0. The expressions can be derived from the corresponding cases for the holding strategy.

When the server is not held, a 1-stranding strategy that we discuss next may be relevant for regular

dispatching.

1-stranding strategy: Here the state will have to be defined as a 2-tuple: î = (ifs, iss), where

for the associated departure, ifs denotes the number stranded for the first time and iss denotes

the number shipped via another company. Then, the elements of Q(t) can be determined via the

following three cases.

Case 1: If jss > 0, jss ≤ ifs and (ifs − jss) ≤ Z,

Q(̂i, ĵ, t) =
∫ t
0 P(A(u) = jfs)P(Dm = ifs − jss)dP{Tm+1 − Tm ≤ u|Xm = î }.

Case 2: If jss = 0, ifs ≤ Z and jfs > 0,

Q(̂i, ĵ, t) =
∫ t
0

∑Z
n=ifs

P(A(u) = n− ifs + jfs)P(Dm = n)dP{Tm+1 − Tm ≤ u|Xm = î }.

Case 3: If jss = 0, ifs ≤ Z and jfs = 0,

Q(̂i, ĵ, t) =
∫ t
0

∑Z−ifs

n=0 P(A(u) = n)Γn+ifs
dP{Tm+1 − Tm ≤ u|Xm = î }.

2.2 Non-homogeneous Poisson arrivals

We now work out the details for the case of non-homogeneous Poisson arrivals. Let λ(t) denote

the intensity function. Let λ̄(ti, tj) ≡
∫ tj
ti λ(τ)dτ with tj ≥ ti. Then P(A(tj − ti)) can be computed

with Equation (1) using P
tj−ti
0 = exp(−λ̄(ti, tj)) and P

tj−ti
n = λ̄(ti,tj)

n

∑l
j=1 jL(j)P tj−ti

n−j in Equation

(1). Because we will need to introduce time into the state space, we are forced to assume that
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the random service time will be finite and discrete; this is not a very strong assumption for an

air-cargo or amusement park system where typically the service time is measured as multiples of

time periods of fixed duration, e.g., 1 hour. Let Ts(t) = P(Service Time = Ψt) where Ψ denotes a

time period of fixed duration and t ∈ I+ = {1, 2, 3, . . . , }.

2.2.1 Holding dispatching

Since time is incorporated into the state space, Hm has to be re-defined.

Hm(i, j, ti, tj) =
B∑

d=i+1

P(Dm = d)

(
d−i−1∑

r=0

P(A(tj − ti) = r)Gm(d− i− r, j)

)

+
Z∑

d=B+1

P(Dm = d)

(
B−i−1∑

r=0

P(A(tj − ti) = r)G∗
m(d− i− r, j, r)

)
. (2)

∞-stranding strategy: Here the state will be defined as a 2-tuple: î = (i, ti), where i denotes

the number stranded at the end of the associated epoch and ti the time at which the epoch ends.

Case 1: If (j − i) > 0,

Case 1a: If j < Lmax, i < B,

P (̂i, ĵ) = P(Ts = tj − ti)
[∑Z+j−i

n=j−i P(A(tj − ti) = n)P(Dm = n− j + i) + Hm(i, j, ti, tj)
]
.

Case 1b: Else,

P (̂i, ĵ) = P(Ts = tj − ti)
∑Z+j−i

n=j−i P(A(tj − ti) = n)P(Dm = n− j + i).

Case 2: If (j − i) ≤ 0, (i− j) ≤ Z, and j 6= 0,

Case 2a: If j < Lmax, i < B,

P (̂i, ĵ) = P(Ts = tj − ti)
[∑Z+j−i

n=0 P(A(tj − ti) = n)P(Dm = n− j + i) + Hm(i, j, ti, tj)
]
.

Case 2b: Else, P (̂i, ĵ) = P(Ts = tj − ti)
∑Z+j−i

n=0 P(A(tj − ti) = n)P(D = n− j + i).

Case 3: If (j − i) ≤ 0, (i− j) ≤ Z, and j = 0,
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Case 3a: If i < B,

P (̂i, ĵ) = P(Ts = tj − ti)
[∑Z+j−i

n=0 P(A(tj − ti) = n)Γn−j+i −
∑Lmax−1

n=1 Hm(i, j, ti, tj)
]
.

Case 3b: Else, P (̂i, ĵ) = P(Ts = tj − ti)
∑Z+j−i

n=0 P(A(tj − ti) = n)Γn−j+i.

Case 4: If (j − i) < 0 and (i− j) > Z, then P (̂i, ĵ) = 0.

0-stranding strategy: Case 1: If j > 0,

Case 1a: If j < Lmax, P (̂i, ĵ) = P(Ts = tj−ti)
[∑Z+j

n=j P(A(tj − ti) = n)P(Dm = n− j)−Hm(0, j, ti, tj)
]
.

Case 1b: Else, P (̂i, ĵ) = P(Ts = tj − ti)
[∑Z+j

n=j P(A(tj − ti) = n)P(Dm = n− j)−Hm(0, j, ti, tj)
]
.

Case 2: If j = 0, P (̂i, ĵ) = P(Ts = tj − ti)
[∑Z

n=0 P(A(tj − ti) = n)Γn −
∑Lmax−1

n=1 Hm(0, n, ti, tj)
]
.

2.2.2 Regular dispatching

Like before, expressions for the regular strategy can be obtained from those for the holding strategy

by setting Hm(., ., .) = 0. In addition, we consider a 1-stranding strategy.

1-stranding strategy: Here, the state will have to be as a three-tuple: î = (ifs, iss, ti), where ti

denotes the time of the associated departure.

Case 1: If jss > 0, jss ≤ ifs and (ifs − jss) ≤ Z,

P (̂i, ĵ) = P(Ts = tj − ti)P(A(tj − ti) = jfs)P(Dm = ifs − jss).

Case 2: If jss = 0, ifs ≤ Z and jfs > 0,

P (̂i, ĵ) = P(Ts = tj − ti)
∑Z

n=ifs
P(A(tj − ti) = n− ifs + jfs)P(Dm = n).

Case 3: If jss = 0, ifs ≤ Z and jfs = 0,

P (̂i, ĵ) = P(Ts = tj − ti)
∑Z−ifs

n=0 P(A(tj − ti) = n)Γn+ifs
.
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3 Performance evaluation and structural properties

Three performance measures that are of interest to us are: the expected number of stranded

customers (E[X]), the variance of the number stranded (Var[X]), and the probability that the

number stranded exceeds a given threshold K (P(X > K)), which is also called the downside

risk. Let ~Π denote the row vector of steady-state probabilities associated with the Markov chain,

whose nth element is denoted by Πn. The elements of ~Π can be obtained by solving the following

system of invariance equations (Ross, 2003): ~ΠP = ~Π;
∑

n∈S Πn = 1. The performance measures

can then be computed using: E[X] =
∑

n∈S nΠn, Var[X] =
∑

n∈S n2Πn−E2[X], and P(X > K) =
∑|S|

n=K+1 Πn.

We now prove some structural results, the proofs of which are in the Appendix.

Ergodicity: In order to compute the steady-state probabilities, it is necessary to show that the

Markov chain is ergodic. We present the following result for ∞-stranding, which can be extended

easily to other stranding strategies.

Theorem 1 Suppose the system is operating under the ∞-stranding strategy. Let Um denote the

number of customers that arrive in the service period before the mth departure and Dm denote

the available capacity before the mth departure. If E[Um] < E[Dm], then X is ergodic for all the

dispatching strategies considered.

Proof The fact that P (i, i) 6= 0 follows for the regular strategy from Cases 2 and 3 and for the

holding strategy from Cases 2a, 2b, 3a, and 3b. Hence {Xm} is aperiodic. That it is irreducible

can be proved on an element-by-element basis. Theorem 2 of Pakes (1969) shows that a Markov

chain is ergodic if the following conditions are satisfied: (i) |ψj | < ∞ and (ii) lim supj→∞ ψj < 0,

where ψj = E[Xm+1 −Xm|Xm = j]. At the mth departure, where m ∈ {1, 2, . . .}, it follows from

the nature of the queue that Xm+1 = Xm + Um −Dm + Bm, where Bm is defined for regular and

holding strategies as follows:

Regular strategy: Bm = max(0, Dm −Xm − Um).
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Holding strategy:

Bm =





min(B, Dm)−Xm − Um if Xm + Um < min(B,Dm)

0 if Xm + Um < B and Xm + Um ≥ Dm

max(0, Dm −Xm − Um) if Xm + Um ≥ B

Since E[Um] and E[Dm] are bounded, E[Bm|Xm = j] is also bounded for both strategies. Hence,

condition (i) is satisfied. By definition of Bm in the regular strategy, if j > Dm − Um, Bm = 0.

Also, for holding strategy, if j > max(Dm−Um, B−Um), Bm = 0. Therefore, it is true for all four

strategies that lim supj→∞ ψj = E[Um]− E[Dm]. Since E[Um] < E[Dm], condition (ii) follows.

A threshold property: We will now show that the problem structure has an interesting thresh-

old property that should appeal to managers interested in optimizing the system. This threshold

property will ensure that given an upper limit on the downside risk, one can determine an optimal

capacity that minimizes costs or the downside risk.

Consider a server with a given maximum capacity. Consider a 2-state chain in which the system

will be said to be in state 1 (state 2) if K or less (more than K) customers are stranded when the

server takes off. Let L (L′) denote the TPM of the chain when the maximum capacity of the server

is C (C ′). Clearly then, if L(i, j) denotes the transition probability of going from state i to state j

when the TPM is L, L(1, 1) =
∑

i<K,j<K P (i, j) and L(2, 1) =
∑

i≥K,j<k P (i, j).

Assumption 1 If C ′ > C, then for some ε1 > 0 and some ε2 > 0.

L′(1, 1) = L(1, 1) + ε1 and L′(2, 1) = L(2, 1) + ε2. (3)

Since the transition probabilities can be evaluated from the elements of the Markov chain,

whether the system satisfies Assumption 1 can be easily verified. Also, it is not hard to show that

the chain defined by L or L′ is a Markov chain.

Theorem 2 Let Assumption 1 hold. If the maximum capacity of the server is increased, the

probability that K or more customers will be stranded decreases for any K > 0.

13



Proof For the proof, the following lemma is needed.

Lemma 1 If b1 6= 0, a1 > b1, a < b, b + b1 > 0, and a1 > 0,

a + a1

b + b1
>

a

b
, where a, b, a1 and b1 are scalars.

Proof If b1 < 0, the result follows from the following: a+a1
b+b1

= a
b+b1

+ a1
b+b1

> a
b + a1

b+b1
> a

b . If

b1 > 0, the following argument is used. Since a1 > b1 and b > a, one has that: ab + a1b > ab + ab1,

which implies that b(a + a1) > a(b + b1), from which the result follows by rearrangement of terms

around the inequality.

Now, let πi and π′i denote the limiting probabilities of state i associated with L and L′ respec-

tively. Then one needs to prove that π′1 > π1. Now, from πL = π and
∑

i πi = 1, it follows that

π1 = π1L(1, 1) + π2L(2, 1), π2 = π1L(1, 2) + π2L(2, 2) and π1 + π2 = 1, from which one has that

π1 = L(2,1)
1−L(1,1)+L(2,1) . Similarly,

π′1 =
L′(2, 1)

1− L′(1, 1) + L′(2, 1)
=

L(2, 1) + ε2
1− L(1, 1)− ε1 + L(2, 1) + ε2

(from (3)).

Using the above and setting a = L(2, 1), b = 1 − L(1, 1) + L(2, 1), a1 = ε2 and b1 = ε2 − ε1,

from Lemma 1, one has that π′1 = L(2,1)+ε2
1−L(1,1)−ε1+L(2,1)+ε2

> L(2,1)
1−L(1,1)+L(2,1) = π1.

A north-west corner structure: The north-west corner truncation of an infinite-dimensional

TPM to a finite one, in order to compute the steady-state probabilities, is a well-known procedure

(Seneta, 1981). It works well when the elements in the TPM taper off becoming negligible as one

proceeds to the eastern and southern sides of the infinite-dimensional matrix. Now, we show that

such a property is actually displayed by the Markov chain that we develop in this paper.

Theorem 3 For the ∞-stranding strategy and any dispatching strategy with homogeneous Poisson

arrivals in bulk, consider the infinite-sized TPM, P. For any finite value of i, j ∈ I+ and non-

zero probability P (i, j), there exists a finite ji > i and ji > j such that ∀j∗ ∈ I+ and j∗ > ji,

P (i, j∗) < P (i, j).
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Proof

Since lim
n→∞P u

n = lim
n→∞


λu

n

Lmax∑

j=1

jL(j)P u
n−j


 (by Equation (1))

≤ lim
n→∞


λu

n

Lmax∑

j=1

j


 (since L(j) and P u

n−j are probabilities)

≤ lim
n→∞

[
λu

n
(Lmax)2

]
≤ 0,

(4)

we have that limn→∞ P u
n ≡ limn→∞ P(A(u) = n) = 0.

For homogeneous Poisson arrivals, if j > i in the case of regular dispatching and if j > i and

j > B in the case of holding:

Q(i, j, t) =
∫ t

0

Z+j−i∑

n=j−i

P(A(u) = n)P(D = n− j + i)dP{Tm+1 − Tm ≤ u|Xn = i }.

Since P (i, j) = limt→∞Q(i, j, t) and limn→∞ P(A(u) = n) = 0, limj→∞ P (i, j) = 0. The result

follows from the definition of a limit of a sequence.

The result can be easily extended to other stranding strategies and non-homogeneous Poisson

arrivals. If one assumes the customer size to be 1 and homogeneous Poisson arrivals, a better

structural property can be proved. We define Pτ (i, j) ≡ Q(i, j, τ), where τ is sufficiently large.

Theorem 4 Consider a system working under the assumption of ∞-stranding strategy and regular

dispatching strategy with single, homogeneous Poisson arrivals. For any finite value of i ∈ I+, there

exists a finite ji ≥ i such that Pτ (i, j) decreases monotonically for all j ≥ ji and any τ > 0. For

the holding strategy, the following holds. For any finite value of i ∈ I+, there exists a finite ji ≥ i

such that Pτ (i, j) decreases monotonically for all j ≥ ji, j ≥ B and any τ > 0.

Proof Let ji=dλτ + i − 1e (where dae denotes the smallest integer greater than or equal to a).

Now, for any i, consider a j ≥ ji. Since ji ≥ i, j ≥ i. In addition, for the case of holding and

the cancellation strategies, assume that j ≥ B. Then Condition 1 holds for the regular strategy,
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Condition 2 for the cancellation strategy, and Condition 4 for the holding strategy. Hence, it can

be written that:

Pτ (i, j) =
∫ τ

0

Z+j−i∑

n=j−i

P(A(t) = n)P(D = n− j + i)dP{Tm+1 − Tm ≤ u|Xn = i } and

Pτ (i, j + 1) =
∫ τ

0

Z+j+1−i∑

n=j+1−i

P(A(t) = n)P(D = n− j − 1 + i)dP{Tm+1 − Tm ≤ u|Xn = i }.

From the above, it follows that:

Pτ (i, j)− Pτ (i, j + 1) =
∫ τ

0




Z+j−i∑

n=j−i

P(A(t) = n)P(D = n− j + i)

−
Z+j+1−i∑

n=j+1−i

P(A(t) = n)P(D = n− j − 1 + i)


 dP{Tm+1 − Tm ≤ u|Xn = i }

=
∫ τε

0

Z∑

n=0

P(D = n) [P(A(t) = n + j − i)− P(A(t) = n + j + 1− i)]

× dP{Tm+1 − Tm ≤ u|Xn = i }. (5)

Now j ≥ ji = dλτ + i− 1e ≥ λτ + i− 1. Hence j− i + 1 ≥ λτ . Then, for all t ≤ τ , 1 ≥ λτ
j−i+1 . Using

this, one has that for all t ≤ τ ,

P(A(t) = n + j − i)− P(A(t) = n + j + 1− i) =
e−λt(λt)n+j−i

(n + j − i)!
− e−λt(λt)n+j−i+1

(n + j − i + 1)!

=
e−λt(λt)n+j−i

(n + j − i)!
(1− λt

n + j − i + 1
)

≥ 0.

The above together with (5) implies that Pτ (i, j) − Pτ (i, j + 1) ≥ 0 for j ≥ ji in the case of the

regular strategy and for the holding strategies if in addition j ≥ B.

A finite estimator: For the purposes of numerical integration, required in computing the tran-

sition probabilities from the semi-Markov kernel’s elements in the homogeneous case, one needs to

approximate the upper limit of the integral by a finite quantity. (Note that for the non-homogeneous

case, we assume finite values for the service time, ruling out the need for finite estimation.) To

show the κ-approximateness of this process, for any κ > 0, the following lemma will be useful.
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Lemma 2 For any ε > 0, there exists a large enough τε > 0 such that for all τ ≥ τε,
∫∞
τ P(A(τ) =

n)dτ < ε ∀n, where f(τ) is the pdf of the service time.

Proof For a given ε > 0, there exists a τε > 0 such that
∫∞
τε

f(τ)dτ < ε.

Since 0 ≤ P(A(τ) = n) ≤ 1, one has that
∫ ∞

τε

e−λτ (λτ)n

n!
f(τ)dτ < ε.

Now for any case of the semi-Markov kernel and for any dispatching strategy, in general:

Q(i, j,∞) =
n̄∑

n=0

∫ ∞

0
R(i, j, n)P(A(t) = n)f(τ)dτ (6)

where n̄, a finite number, and R(i, j, n), a function, both depend on the associated case. The

expression (6) follows from the fact that for any case, dP{.} = f(τ)dτ . Then, using sufficiently

large but finite values for the upper limit in the integrals in (6), one can develop an approximation

for Q(i, j,∞). The approximation will be defined as follows for any given value of κ > 0:

Qκ(i, j) ≡
n̄∑

n=0

∫ τεn

0
R(i, j, n)P(A(τ) = n)f(τ)dτ, (7)

where εn = κ/(n̄ + 1) and τεn is selected as defined in Lemma 2 (using ε = εn). The latter implies

that for all τ ≥ τεn , ∫ ∞

τ
P(A(τ) = n)f(τ)dτ < εn ∀n. (8)

Theorem 5 For a given value of κ > 0 and for every i and j, there exists a Qκ(i, j) such that

|Qκ(i, j)− limt→∞Q(i, j, t)| < κ.

Proof The notation limt→∞Q(i, j, t) = Q(i, j,∞) will be used. It is also true that for any finite n

R(i, j, n) ≤ 1, (9)

since R(i, j, n) is always a probability. Then for any i, j ∈ S,

|Q(i, j,∞)−Qκ(i, j)| =

∣∣∣∣∣
n̄∑

n=0

R(i, j, n)
∫ τεn

0
P(A(τ) = n)f(τ)dτ+

R(i, j, n)
∫ ∞

τεn

P(A(τ) = n)f(τ)dτ −R(i, j, n)
∫ τεn

0
P(A(τ) = n)f(τ)dτ

∣∣∣∣∣
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( from Equations (6) and (7) )

=

∣∣∣∣∣
n̄∑

n=0

R(i, j, n)
∫ ∞

τεn

P(A(τ) = n)f(τ)dτ

∣∣∣∣∣

≤
n̄∑

n=0

εn (from Equations (9) and (8))

= κ

Optimization of server capacity: As stated above, in a commercial system, bulk queueing

models are useful to determine the optimal capacity of the server. This is an involved topic in

itself, and hence beyond the scope of this paper. Therefore, our discussion is very brief. The

simplest optimization model that can be constructed in this context is one to optimize the capacity

subject to a constraint on the downside risk:

Minimize Z such that P(X > K) < pmax, where K ∈ I+ and pmax ∈ (0, 1).

Since the downside risk can be evaluated for any given capacity using the models presented above,

it is not very difficult to optimize the capacity of the server.

4 Computational Results

We now describe the results of our computational experiments. We begin with some notation.

Notation: Since, we have developed the models for numerous combinations of dispatching and

stranding strategies for homogenous and non-homogenous Poisson arrivals, in order to increase

readability, we have developed the following notation to define each case studied:

Dispatching strategy|Stranding Strategy|Nature of arrivals,

where R = regular dispatching, H = holding dispatching, h = homogeneous Poisson arrival, and

nh = non-homogeneous Poisson arrival. The stranding strategy is denoted either by∞, 0, or 1. For

the homogeneous case, we used the uniform distribution (denoted by U(a, b)) for the service time,

although we note that our model works in general for any distribution. For the non-homogeneous
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case, the time horizon over which arrivals can occur before a service occurs (i.e., the inter-arrival

time) is divided into four intervals, and λk denotes the mean arrival rate in the kth interval. Let

L̄ = (L(1), . . . , L(Lmax)), Ts(t) = P(Service Time = Ψt), and T̄s = (Ts(1), . . . , Ts(ST )) where

L(l) = P(L = l) and Lmax denotes the maximum size of the customer.

Input parameters and results In order to test the validity of our models numerically, it is

prudent to perform an extensive computational investigation over a variety of pmfs for the server

capacity (φ). Accordingly, we have chosen twenty one different pmfs with the server capacity

varying from 8 to 40. These distributions are described in Table 1.

Tables 2 and 3 denote the input parameters and the results, respectively, for the case of hold-

ing strategy with ∞-stranding and homogenous Poisson arrivals. We studied ten different cases

described in Table 2. The deviation of the value produced by the Markov chain model from that

produced by the simulation model is expressed in percentage as follows:

Deviation (in %) =
|V alueMC − V alueSIM |

|V alueSIM | × 100

where V alueM denotes the value obtained from a model M , and MC denotes the Markov chain

model and SIM the simulation model. As is clear from the results in Table 3, the deviation of the

Markov chain model is less than 3% in each case. Also, the Markov chain model takes a significantly

shorter length of time on the computer. For the downside risk, we have not shown the deviation,

because it was insignificant up to five places after the decimal point.

For the non-homogenous case, we used Ψ = 1 in all our computations. Assumption 1 and the

north-west-corner properties were verified in all of these experiments. Results involving the holding

strategy with ∞-stranding and other forms of stranding when the arrival process is nonhomoge-

neous Poisson, regular holding strategy with 1-stranding and homogenous arrivals, and some other

computations related to regular holding can be found in the online supplement to this paper.
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5 Conclusions

This paper presented Markov chain models to determine the distribution of the number stranded

after the server leaves in a bulk-service, bulk-arrival queue. Studies of bulk queues continue to

attract research attention because of their ubiquitous nature. However, the existing literature has

focussed on the distribution of the customer waiting time in such queues, ignoring the distribution

of the number stranded, which plays a role in determining whether server capacity is sufficient.

Also, the literature has developed Laplace transform techniques which could potentially be useful

in determining this distribution. In this paper, however, we used a discrete-time Markov chain

and presented results which show that this technique elegantly scales up to the complexity of

this problem without having to generate the complex zeroes required in Laplace transforms. We

presented an extensive analysis of this kind of a queue under a variety of dispatching and stranding

strategies. Finally, we performed an extensive numerical study to show the usefulness of our models

and mathematical results. Potential future work could be related to retrial queues (Artalejo et al.,

2007, 2008) in systems of the nature studied in this paper.
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Table 1: Various patterns for φ.

Z P(D = 0), P(D = 1), . . . , P(D = Z)

φ11 9 {0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2}
φ12 14 {0, 0, 0.05, 0.05, 0.05, 0.05, 0.05, 0.08, 0.08, 0.08, 0.08, 0.09, 0.09, 0.09, 0.16}
φ13 12 {0, 0, 0, 0, 0, 0.08, 0.09, 0.12, 0.15, 0.19, 0.18, 0.1, 0.09}
φ14 25 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.3, 0.2, 0.2, 0.1, 0.05, 0.05}
φ15 20 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.3, 0.2, 0.2, 0.1, 0.1}
φ16 15 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2}
φ17 16 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.05, 0.05, 0.1, 0.3, 0.25, 0.15, 0.05, 0.05}
φ18 20 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.2, 0.2, 0.2, 0.1, 0.1}
φ19 10 {0, 0, 0, 0, 0, 0.1, 0.3, 0.25, 0.25, 0.05, 0.05}
φ20 25 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0.1, 0.2, 0.2, 0.1, 0.05, 0.05}
φ21 30 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0.1, 0.2, 0.2, 0.1, 0.05, 0.05}
φ22 40 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.2, 0.2, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05}
φ23 25 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}
φ24 10 {0, 0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2}
φ25 12 {0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.2, 0.2, 0.2, 0.1, 0.1}
φ26 8 {0, 0, 0.05, 0.05, 0.1, 0.1, 0.1, 0.3, 0.3}
φ27 11 {0, 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.2, 0.25, 0.25}
φ28 20 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.05, 0.05, 0.05, 0.05, 0.1, 0.1, 0.1, 0.2, 0.2, 0.1}
φ29 20 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2}
φ30 16 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.15, 0.15, 0.2, 0.2, 0.1, 0.1}
φ31 10 {0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.3, 0.3, 0.1}
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Table 2: System parameters for H|∞|h. Here U(a, b) denotes a uniform distribution with parame-

ters a and b.

System λ Lmax, L̄ φ U(a,b) B

1 0.8 5, (0.1,0.1,0.2,0.3,0.3) φ16 2,4 6

2 1.2 5, (0.1,0.1,0.2,0.3,0.3) φ16 1,3 6

3 1.2 6, (0,0.1,0.1,0.2,0.3,0.3) φ16 1,3 6

4 1.2 6, (0,0.1,0.1,0.2,0.3,0.3) φ16 1,3 12

5 1.1 6, (0,0.1,0.1,0.2,0.3,0.3) φ16 1,3 8

6 1.2 6, (0,0.1,0.1,0.2,0.3,0.3) φ28 2.1,2.5 10

7 1.2 6, (0,0.1,0.1,0.2,0.3,0.3) φ28 2.1,2.5 13

8 1.2 4, (0.1,0.1,0.5,0.3) φ28 2.1,2.5 13

9 1.5 4, (0.1,0.1,0.5,0.3) φ28 2.1,2.5 13

10 1.5 4, (0.1,0.1,0.5,0.3) φ28 2.8,3 15

Table 3: Performance parameters for H|∞|h

E(X) Var(X) P(X > 5)

System Markov chain Simulation Deviation in % Markov Chain Simulation Deviation in %

1 2.85213 2.85515 0.105773777 31.894472 31.918182 0.074283679 0.21766

2 3.209972 3.207042 0.091361448 38.742991 38.622138 0.312911212 0.236145

3 18.486579 18.510549 0.129493728 554.806878 555.340573 0.096102289 0.629807

4 19.396082 19.596766 1.02406693 556.55507 560.120996 0.636634946 0.656585

5 9.498974 9.542315 0.454197959 190.962767 191.166136 0.106383382 0.469216

6 5.395274 5.417871 0.417082651 85.424777 85.312782 0.131275757 0.331734

7 5.654459 5.712131 1.00964071 86.095061 86.177634 0.095817205 0.343167

8 0.53269 0.548185 2.826600509 2.732738 2.761575 1.044222952 0.032794

9 1.19049 1.215353 2.045743089 8.912699 9.043056 1.441514904 0.092643

10 4.135253 4.186771 1.230494813 47.93385 48.08815 0.320869071 0.287316
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Table 1: System parameters for H|∞|nh.

System λ1,2,3,4 ST , T̄s Lmax, L̄ φ B
1 3.5,2,3,2.5 3, (0.3,0.4,0.3) 4, (0.2,0.2,0.3,0.3) φ29 6
2 3.5,2,3,2.5 3, (0.3,0.4,0.3) 4, (0.2,0.2,0.3,0.3) φ29 14
3 3,2,3,2.5 3, (0.3,0.4,0.3) 6, (0,0.1,0.1,0.2,0.3,0.3) φ29 10
4 3,2,3,2.5 3, (0.3,0.4,0.3) 6, (0,0.1,0.1,0.2,0.3,0.3) φ29 20
5 1,2,1,2.5 3, (0.3,0.4,0.3) 5, (0.1,0.1,0.3,0.3,0.2) φ30 8
6 1,2,1,2.5 3, (0.5,0.4,0.1) 5, (0.1,0.1,0.3,0.3,0.2) φ30 8
7 4,1,1.5,2.5 3, (0.3,0.4,0.3) 4, (0.2,0.2,0.4,0.2) φ28 12
8 4,1,1.5,2.5 3, (0.3,0.4,0.3) 4, (0.2,0.2,0.4,0.2) φ28 16
9 4,1,3.5,2.5 3, (0.3,0.4,0.3) 3, (0.2,0.4,0.4) φ28 10
10 4,1,3.5,2.5 3, (0.3,0.4,0.3) 3, (0.2,0.4,0.4) φ28 15

Table 2: Performance parameters for H|∞|nh.

E(X) Var(X) P(X > 5)
System Markov chain Simulation Deviation in % Markov Chain Simulation Deviation in %

1 11.405022 11.457133 0.454834556 263.40109 264.254321 0.322882516 0.480214
2 11.518538 11.834147 2.66693493 263.59816 267.656048 1.516083059 0.483129
3 16.796941 17.317612 3.006598138 512.57867 528.747027 3.057862489 0.555509
4 18.548689 19.908419 6.829924566 522.826619 548.244631 4.636253702 0.592038
5 32.015368 32.689056 2.06089769 1345.601733 1384.918841 2.838946719 0.737113
6 5.841444 6.014764 2.881576068 86.273881 90.1262 4.274360841 0.319314
7 3.678307 3.779234 2.670567634 47.204557 47.796337 1.238128353 0.231251
8 3.969427 4.16795 4.76308497 47.629028 49.192915 3.179089916 0.238955
9 3.549695 3.613171 1.756794793 44.840221 45.102211 0.580880614 0.228175
10 3.724137 3.882396 4.076322972 45.073558 46.192856 2.423097632 0.232927

Table 3: System parameters for H|0|nh.

System λ1,2,3,4 ST , T̄s Lmax, L̄ φ B
1 5,3,1,4 3, (0.3,0.4,0.3) 4, (0.2,0.2,0.3,0.3) φ29 8
2 5,3,1,4 3, (0.3,0.4,0.3) 4, (0.2,0.2,0.3,0.3) φ29 15
3 2,1,7,9 3, (0.3,0.4,0.3) 4, (0.2,0.2,0.3,0.3) φ29 15
4 4.3,5,2 3, (0.3,0.4,0.3) 3, (0.3,0.3,0.4) φ29 10
5 4.3,5,2 3, (0.3,0.4,0.3) 3, (0.3,0.3,0.4) φ29 16
6 4.3,5,2 3, (0.3,0.4,0.3) 3, (0.3,0.3,0.4) φ29 5
7 1,3,4,2 3, (0.3,0.4,0.3) 3, (0.3,0.3,0.4) φ31 5
8 1,3,4,2 3, (0.3,0.4,0.3) 3, (0.3,0.3,0.4) φ31 7
9 2,5,3,1 3, (0.4,0.4,0.2) 3, (0.7,0.2,0.1) φ31 7
10 2,5,3,1 3, (0.4,0.4,0.2) 3, (0.7,0.2,0.1) φ31 9
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Table 4: Performance parameters for H|0|nh.

E(X) Var(X) P(X > 5)
System Markov chain Simulation Deviation in % Markov Chain Simulation Deviation in %

1 4.495751 4.481804 0.311191654 50.82339 50.395535 0.848993864 0.294938
2 4.607165 4.626356 0.41481892 50.023035 49.295476 1.475914342 0.294151
3 11.669102 12.281352 4.985200326 179.657423 180.959205 0.719378713 0.529258
4 2.345025 2.363675 0.789025564 21.47938 21.215161 1.245425382 0.170225
5 2.467095 2.543642 3.009346441 21.074645 21.242542 0.790380925 0.170225
6 2.345025 2.3257 0.830932622 21.47938 20.861082 2.963882698 0.170225
7 4.119728 4.142097 0.540040467 30.041506 29.145071 3.075768798 0.306965
8 4.201805 4.261275 1.395591695 29.477994 28.598176 3.07648292 0.306965
9 1.686065 1.686004 0.003618022 9.226588 8.977472 2.774901442 0.116786
10 1.812272 1.822315 0.551112184 8.965558 8.73023 2.695553267 0.116786

Table 5: System parameters for H|0|h.

System λ Lmax, L̄ φ U(a,b) B
1 2.5 5, (0.1,0.1,0.2,0.3,0.3) φ16 3,4 8
2 2.5 5, (0.1,0.1,0.2,0.3,0.3) φ16 3,4 13
3 6.5 5, (0.1,0.1,0.2,0.3,0.3) φ16 1.8,2 13
4 3.5 4, (0.1,0.1,0.5,0.3) φ16 1.8,2 10
5 3.5 4, (0.1,0.1,0.5,0.3) φ16 1.8,2 15
6 3 4, (0.1,0.1,0.5,0.3) φ16 2.4,3.2 6
7 3 4, (0.1,0.1,0.5,0.3) φ16 2.4,3.2 11
8 3.2 4, (0.1,0.1,0.5,0.3) φ28 2.4,3.2 11
9 3.2 4, (0.1,0.1,0.5,0.3) φ28 3.9,4.1 12
10 3.2 4, (0.1,0.1,0.5,0.3) φ28 3.9,4.1 18

Table 6: Performance parameters for H|0|h.

E(X) Var(X) P(X > 5)
System Markov chain Simulation Deviation in % Markov Chain Simulation Deviation in %

1 19.031039 19.038386 0.038590456 132.507161 132.571047 0.048190009 0.897352
2 19.055288 19.066944 0.061131978 131.645493 131.266976 0.288356608 0.897352
3 31.802778 31.870677 0.213045365 181.929295 185.102881 1.714498436 0.987104
4 8.087027 8.095265 0.101763191 53.710772 53.614221 0.180084683 0.610311
5 8.248227 8.29712 0.589276761 51.413858 50.855585 1.097761436 0.610311
6 12.869171 12.872472 0.02564387 82.148042 82.14927 0.00149484 0.79744
7 12.881389 12.887331 0.046107297 81.856774 81.780276 0.093540892 0.79744
8 10.820414 10.825239 0.044571764 81.496422 81.488641 0.00954857 0.700387
9 21.760903 21.751715 0.042240347 129.155606 129.30493 0.115482062 0.941763
10 1.771145 21.751715 0.08932629 128.729827 129.30493 0.444764944 0.941763
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Table 7: System parameters for R|1|h.

System λ Lmax, L̄ φ U(a,b)
1 3 3, (0.2,0.4,0.4) φ16 2,4
2 2 3, (0.3,0.4,0.3) φ16 2.4
3 2.8 3, (0.3,0.4,0.3) φ18 3,5
4 1.5 3, (0.1,0.3,0.6) φ17 3,5
5 1.5 3, (0.1,0.3,0.6) φ17 2,6
6 1.7 4, (0.1,0.1,0.5,0.3) φ17 2,6
7 2.4 3, (0.2,0.3,0.5) φ17 3.8,4.2
8 1.3 3, (0.2,0.3,0.5) φ19 2.7,3.3
9 2.1 3, (0.2,0.3,0.5) φ19 2.7,3.3
10 1.1 3, (0.2,0.3,0.5) φ19 4.9,5.1

Table 8: Performance parameters for the number stranded for R|1|h.

E(X) Var(X) P(X > 5)
System Markov chain Simulation Deviation in % Markov Chain Simulation Deviation in %

1 14.10566 14.128283 0.160125615 61.247546 61.472835 0.366485457 0.887688
2 5.690404 5.690848 0.007802001 37.197586 37.183736 0.037247468 0.478011
3 20.299113 20.39521 0.471174359 72.176467 73.84217 2.255761173 0.968452
4 11.661313 11.655966 0.045873504 57.054576 57.241558 0.326654281 0.807972
5 11.251906 11.274114 0.19698222 69.040913 69.665638 0.896747691 0.756556
6 18.80123 18.86536 0.339935204 106.804546 108.904963 1.928669679 0.926993
7 21.689144 21.721046 0.732198146 58.134926 58.946585 1.376939818 0.99446
8 7.134525 7.134343 0.002551041 26.383153 26.384551 0.005298555 0.660551
9 14.186164 14.187568 0.009895988 38.680524 38.845421 0.424495335 0.955618
10 12.112389 12.118175 0.047746463 34.165844 34.193498 0.080875025 0.914335

Table 9: System parameters for R|1|nh.

System λ1,2,3,4 ST , T̄s Lmax, L̄ φ
1 1.2,1.8,2.1,1.1 3, (0.4,0.5,0.1) 3, (0.3,0.5,0.2) φ24

2 0.8,2.5,2,1.3 3, (0.5,0.4,0.1) 3, (0.3,0.4,0.3) φ24

3 1.8,3.1,2.6,1.9 3, (0.5,0.4,0.1) 3, (0.3,0.5,0.2) φ24

4 2.1,1.8,5.1,0.6 3, (0.5,0.4,0.1) 3, (0.3,0.5,0.2) φ25

5 1,1.5,3,1.5 3, (0.6,0.2,0.2) 3, (0.3,0.5,0.2) φ26

6 1.8,1.1,1.9.1.2 3, (0.6,0.2,0.2) 3, (0.3,0.5,0.2) φ26

7 2.1,1.1,3,0 3, (0.2,0.5,0.3) 3, (0.3,0.5,0.2) φ26

8 2,1.5,1,1.5 3, (0.2,0.5,0.3) 3, (0.3,0.4,0.3) φ27

Table 10: Performance parameters for the number stranded for R|1|nh.

E(X) Var(X) P(X > 5)
System Markov chain Simulation Deviation in % Markov Chain Simulation Deviation in %

1 1.338446 1.342466 0.299448925 6.993925 7.077183 1.176428531 0.116578
2 1.428162 1.433461 0.369664748 7.79405 7.931625 1.734512159 0.125493
3 3.729076 3.73749 0.225124348 21.574447 21.694233 0.552155958 0.337544
4 2.935519 2.946359 0.367911717 20.123144 20.397506 1.345076207 0.258947
5 3.430557 3.432075 0.044229803 19.470659 19.558191 0.447546504 0.306968
6 1.740234 1.743122 0.16567974 9.159452 9.264735 1.136384365 0.153051
7 3.506154 3.512323 0.175638744 17.31922 17.410772 0.525835385 0.329247
8 2.7323597 2.756014 0.858304784 15.645689 15.896856 1.579979085 0.215685
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Table 11: System parameters for R|∞|h.

System λ Lmax, L̄ φ U(a,b)
1 0.8 3, (0.2,0.4,0.4) φ11 2,4
2 0.95 3, (0.2,0.4,0.4) φ11 2.4
3 0.6 3, (0.2,0.4,0.4) φ11 3,5
4 0.6 3, (0.3,0.3,0.4) φ12 4,6
5 1.5 3, (0.3,0.3,0.4) φ12 2,3
6 0.9 3, (0.3,0.3,0.4) φ12 3,6
7 0.6 3, (0.1,0.2,0.7) φ12 4.6
8 0.5 5, (0,0.1,0.1,0.5,0.3) φ13 3,5
9 0.65 5, (0,0.1,0.1,0.5,0.3) φ13 1,3
10 0.8 4, (0,0,0.5,0.5) φ13 1,3

Table 12: Performance parameters for R|∞|h.

E(X) Var(X) P(X > 5)
System Markov chain Simulation Deviation in % Markov Chain Simulation Deviation in %

1 4.927 4.925521 0.03002728 51.552025 51.625358 0.14204841 0.362064
2 29.167278 28.966603 0.692780579 1029.820651 1003.254301 2.648017554 0.786818
3 4.771326 4.802577 0.650713148 48.642077 49.224674 1.18354669 0.354974
4 2.843547 2.842245 0.045808859 25.748025 25.776266 0.109562029 0.231795
5 10.007151 10.015923 0.087580545 171.186114 171.338288 0.088814941 0.532383
6 23.73356 23.757196 0.099489856 746.152106 754.593818 1.118709403 0.730283
7 10.119194 10.102449 0.165751888 177.285295 178.349601 0.596752667 0.530825
8 26.206271 25.98545 0.849787092 912.014622 895.99532 1.787877865 0.739774
9 2.16185 2.162237 0.017898131 20.220988 20.204012 0.084022916 0.175514
10 2.413671 2.415984 0.095737389 22.286747 22.318914 0.144124396 0.196836

Table 13: System parameters for R|0|h.

System λ Lmax, L̄ φ U(a,b)
1 0.8 3, (0.2,0.4,0.4) φ11 2,4
2 1.1 3, (0.2,0.4,0.4) φ11 1,5
3 1.8 5, (0,0.1,0.1,0.5,0.3) φ11 2,6
4 0.6 5, (0,0.1,0.1,0.5,0.3) φ12 4,6
5 0.7 5, (0,0.1,0.2,0.3,0.2),0.2 φ12 1,5
6 1.5 5, (0.1,0.2,0.3,0.2,0.2) φ12 1,3
7 3 5, (0.1,0.2,0.3,0.2,0.2) φ14 2,4
8 1.3 5, (0.1,0.2,0.3,0.2,0.2) φ14 4,7
9 1.6 6, (0,0.1,0.25,0.25,0.3,0.1) φ14 4,7
10 2.2 6, (0,0.1,0.25,0.25,0.3,0.1) φ15 4,6

5



Table 14: Performance parameters for R|0|h
E(X) Var(X) P(X > 5)

System Markov chain Simulation Deviation in % Markov Chain Simulation Deviation in %
1 1.14523 1.14542 0.016587802 5.314004 5.317751 0.070462118 0.094266
2 2.466295 2.4766 0.416094646 14.218175 14.405369 1.299473828 0.22457
3 22.256316 22.281209 0.111721945 187.818136 189.604431 0.942116696 0.912308
4 4.743565 4.749437 0.123635707 37.029403 37.101037 0.193078161 0.389528
5 1.706088 1.706074 0.000820597 12.660871 12.708793 0.377077508 0.150163
6 3.190777 3.190396 0.011942091 25.073607 25.0659 0.030746951 0.272478
7 9.203577 9.207623 0.043941851 96.373744 96.347795 0.026932635 0.570788
8 4.79256 4.785072 0.156486674 47.649846 47.555008 0.199427997 0.359695
9 15.155145 15.189051 0.223226586 158.503343 159.893038 0.869140406 0.750442
10 27.251937 27.442193 0.693297361 210.761449 219.469518 3.967780619 0.949418

Table 15: System parameters for R|∞|nh.

System T λ1,2,3,4 ST , T̄s Lmax, L̄ φ
1 4 1,4,2,5 3, (0.3,0.4,0.3) 3, (0.2,0.4,0.4) φ20

2 4 3,5,3,8 3, (0.3,0.4,0.3) 3, (0.4,0.5,0.1) φ20

3 4 1,3,2,2 3, (0.3,0.4,0.3) 4, (0.2,0.3,0.3,0.2) φ20

4 4 2,6,5,4 3, (0.4,0.4,0.2) 4, (0.2,0.3,0.3,0.2) φ21

5 4 3,7,4,6 3, (0.4,0.4,0.2) 4, (0.2,0.3,0.3,0.2) φ21

6 4 4,3,2,6 3, (0.4,0.4,0.2) 5, (0.4,0.1,0.2,0.2,0.1) φ21

7 4 5,4,1,7 3, (0.4,0.4,0.2) 5, (0.4,0.1,0.2,0.2,0.1) φ21

8 4 3,7,2,10 3, (0.4,0.4,0.2) 5, (0.4,0.1,0.2,0.2,0.1) φ22

9 4 2,9,4,8 3, (0.4,0.4,0.2) 5, (0.4,0.1,0.2,0.2,0.1) φ22

10 4 2,9,4,8 3, (0.3,0.4,0.3) 4, (0.2,0.3,0.3,0.2) φ22

Table 16: Performance parameters for R|∞|nh.

E(X) Var(X) P(X > 5)
System Markov chain Simulation Deviation in % Markov Chain Simulation Deviation in %

1 1.489237 1.489863 0.042017286 15.628299 15.625457 0.018188268 0.10448
2 4.378734 4.385148 0.146266443 60.895978 61.467172 0.929266764 0.268625
3 0.40056 0.399002 0.390474233 3.251019 3.250689 0.010151694 0.027553
4 5.102523 5.114937 0.242700936 93.38255 93.23185 0.16164004 0.273086
5 17.045342 17.183964 0.806693962 555.590373 567.625038 2.120178673 0.541502
6 2.750245 2.753933 0.133917564 42.22657 42.023644 0.482885301 0.168573
7 5.895933 5.899954 0.068153074 115.670372 115.472645 0.171232763 0.29856
8 5.875185 5.882264 0.12034482 131.856832 132.487782 0.476232593 0.275581
9 7.570653 7.605456 0.457605698 188.723621 190.434858 0.898594416 0.324423
10 14.147141 14.059614 0.622541984 432.781127 426.85313 1.388767373 0.480358
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Table 17: System parameters for R|0|nh.

System λ1,2,3,4 ST , T̄s Lmax, L̄ φ
1 8,4,13,0 3, (0.3,0.4,0.3) 3, (0.1,0.4,0.5) φ23

2 3,5,3,8 3, (0.3,0.4,0.3) 3, (0.1,0.4,0.5) φ20

3 1,3,2,2 3, (0.3,0.4,0.3) 4, (0.2,0.3,0.3,0.2) φ20

4 2,6,5,4 3, (0.4,0.4,0.2) 4, (0.2,0.3,0.3,0.2) φ21

5 3,7,4,6 3, (0.4,0.4,0.2) 4, (0.2,0.3,0.3,0.2) φ21

6 9,5,12,3 3, (0.4,0.4,0.2) 5, (0.4,0.1,0.2,0.2,0.1) φ21

7 5,2,11,7 3, (0.4,0.4,0.2) 5, (0.4,0.1,0.2,0.2,0.1) φ21

8 3,7,2,10 3, (0.4,0.4,0.2) 5, (0.4,0.1,0.2,0.2,0.1) φ22

9 5,12,6,9 3, (0.3,0.4,0.3) 5, (0.4,0.1,0.2,0.2,0.1) φ22

10 2,9,4,8 3, (0.3,0.4,0.3) 4, (0.2,0.3,0.3,0.2) φ22

Table 18: Performance parameters for R|0|nh.

E(X) Var(X) P(X > 5)
System Markov chain Simulation Deviation in % Markov Chain Simulation Deviation in %

1 12.756387 12.747199 0.07207858 200.709964 200.432454 0.138455622 0.571072
2 5.995404 5.998659 0.054262128 73.326584 73.415495 0.121106587 0.363651
3 0.329454 0.328084 0.417575987 2.505785 2.499718 0.242707377 0.022374
4 2.312325 2.314167 0.079596676 29.263576 29.225208 0.131283924 0.154039
5 3.75131 3.753925 0.069660422 51.830118 51.879282 0.094766153 0.231482
6 11.059622 11.067367 0.069980511 197.203253 197.663121 0.232652403 0.496192
7 8.188784 8.183437 0.065339294 146.386549 146.347673 0.026564139 0.390419
8 2.824246 2.825207 0.034015207 47.215069 47.202654 0.026301487 0.163701
9 11.364887 11.373046 0.071739796 213.618866 213.912856 0.13743447 0.482915
10 4.068633 4.067844 0.019396024 65.939404 65.873396 0.100204337 0.23062
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