
Abstract number: 007-0058
Adaptive Critics for Airline Revenue Management

Abhijit Gosavi
Department of Industrial and Systems Engineering

University at Buffalo, SUNY
317 Bell Hall, Buffalo, NY 14260

agosavi@buffalo.edu

POMS 18th Annual Conference
Dallas, Texas, U.S.A.
May 4 to May 7, 2007.

Abstract

We present an approximate dynamic programming (DP) technique, called adaptive
critic, for solving an airline revenue management problem. The revenue management
problem is cast as a semi-Markov decision problem (semi-MDP). Werbos [25] first sug-
gested the use of policy iteration in approximate DP, and the adaptive critic essentially
falls within this class of algorithms. Barto et al [1] wrote a paper that provided a step-
size-based technique for this algorithm. Recently, Konda and Borkar [15] analyzed a
modified version for its convergence properties. All three of these works focus on the
MDP. We combine notions from these works to solve the associated semi-MDP and
prove its convergence. We provide computational evidence to demonstrate the efficacy
of our method. In addition, we extend our technique to handle Markowitz risk, which
should appeal to risk-sensitive airline managers seeking to avoid bankruptcy.

1 Introduction

For solving complex Markov decision problems (MDPs), Adaptive critics (AC) form a useful
class of algorithms. For solving MDPs via policy iteration, Werbos [25] developed a frame-
work now well-known as Heuristic Dynamic Programming (HDP). A powerful feature of this
framework is that it relies on a derivative-based mechanism that handily allows the functions
of actors and critics to be approximated via neural networks. HDP has led to the birth of
several important algorithms, e.g., dual heuristic programming and action-dependent HDP
[24, 19]. Another development was that of Barto et al. [1], which combined learning as-
pects within the AC framework. A third development is that of Konda and Borkar [15],
who showed that in a two-time-scale framework most AC algorithms converge with proba-
bility 1. Notably, there is also a significant amount of literature on reinforcement learning
(RL) [22, 10] or neuro-dynamic (approximate dynamic) programming [3] that addresses AC
algorithms.

In this paper, we extend the policy-iteration-based AC algorithm to semi-MDPs (SMDPs)
and test it on the airline revenue management (ARM) problem. The ARM problem under
realistic considerations, such as cancelations and overbooking, is intractable via classical
dynamic programming (DP) because it is difficult to generate the exact transition proba-
bility matrices involved. Our work here is motivated by a need to solve the ARM problem
in a near-exact fashion. We also study a value-iteration-based approximate DP (ADP)
algorithm for the SMDP. We then prove the convergence of both algorithms.

1

We then extend the AC algorithm to handle risk. In particular, we look at variance,
which as a measure of risk was originally presented in Markowitz [17]. Risk-sensitive DP is
a topic of much interest currently [5, 4]. The problem we study is solvable via a quadratic
programming approach [9], but not exactly by dynamic programming (DP); see however
[12] for a related criterion. It turns out that the two-time-scale framework [6] is well-suited
for the development of our algorithm. We are still working on the numerical results with the
risk-sensitive algorithm on the ARM problem, and we will present those at the conference.

The rest of this paper is organized as follows. Section 2 presents the SMDP model and
then describes the ARM problem in some detail. It also describes the new AC algorithm and
a value-iteration-based algorithm, along with the convergence proofs. Section 3 presents the
risk-sensitive versions of the AC algorithm. Section 4 presents the numerical results with
the ARM problem and small MDPs for the risk-sensitive case. Section 5 concludes the paper
with a discussion on large-scale approximation and comments on possible future work.

2 SMDP modeling for ARM

2.1 SMDP

We first present the SMDP model and begin with some notation and definitions. Let S
denote the finite set of states in the SMDP, A(i) the finite set of actions permitted in state i,
and µ(i) the action chosen in state i when policy µ̂ is pursued, where ∪i∈SA(i) = A. Further
let r(., ., .) : S ×A×S → < denote the one-step immediate reward, t(., ., .) : S ×A×S → <
denote the time spent in one transition, and p(., ., .) : S×A×S → [0, 1] denote the associated
transition probability. Then the expected immediate reward earned in state i when action a

is chosen in it can be expressed as: r̄(i, a) =
∑|S|

j=1 p(i, a, j)r(i, a, j) and the expected time

of the associated transition: t̄(i, a) =
∑|S|

j=1 p(i, a, j)t(i, a, j). In our notation, ~x will denote
a column vector whose ith element is x(i).

Now, let

αµ̂(i) ≡ lim
k→∞

Eµ̂

[∑k
s=1 r̄(xs, µ(xs))|x1 = i

]

k
and

βµ̂(i) ≡ lim
k→∞

Eµ̂

[∑k
s=1 t̄(xs, µ(xs))|x1 = i

]

k
.

Then for irreducible and recurrent Markov chains, from Theorem 7.5 [18] (pg 160), the
long-run average reward of a policy µ̂ in an SMDP starting at state i is ρµ̂(i) = αµ̂(i)

βµ̂(i) .
For irreducible and aperiodic Markov chains, ρ(.) is independent of the starting state. The
risk-neutral optimal policy is one that is associated with the maximum ρ.

2.2 ARM

The field of ARM revolves around maximizing the net revenues obtained by selling airline
seats. Although it is essentially a problem of pricing, the pricing control is exercised via
capacity control. In other words, the set of allowable prices is fixed beforehand, so that
each price is said to belong to a “price class” or simply “class,” and limits are set to the

2

number of seats available for each class. The ARM problem is to find the optimal values
for these limits. This is also called the seat-allocation problem.

Typically, there are significant differences between the demands of the customers, and
some customers demand more expensive tickets in return for special features, such as cheaper
cancelation fees or fewer stopovers. Airline companies prepare forecasts of the number of
passengers expected for each price class. Some passengers cancel tickets, however, and
hence airlines “overbook” planes to reduce the probability of flying with empty seats. The
additional question that arises then is: by how much should the company overbook the
plane? Customer arrivals during the booking period is a random process, and so is the
cancelation process. When the plane takes off, if a confirmed passenger does not get a
ticket, the airline has to pay a penalty. Selling too many seats in the lower fare classes does
not make business sense, while setting very low booking limits for the lower fare classes
usually ensures that the plane is not full at takeoff.

The EMSR (Expected marginal seat revenue) heuristic [16, 2] is widely used in the
industry for solving this problem. There is now a vast literature on the ARM problem;
we do not cite all the seminal works but refer the reader to a textbook [23]. The ARM
problem can be set up as an infinite horizon SMDP by making the system state transition
to the start of the booking horizon when the plane takes off. This approach has been used
in [13, 11], which used ADP techniques based on temporal differences and modified policy
iteration.

The SMDP state can be modeled approximately with the following (2n + 2)-tuple:
〈c, t, s1, s2, . . . , sn, ψ1, ψ2, . . . , ψn〉 where c denotes the class of the current customer, t de-
notes the time remaining for the flight departure, n denotes the number of classes, si denotes
the number of seats sold in the ith class, and ψi is in itself an si-tuple that contains the
times of arrival (in the booking horizon) of the passengers in the ith class. We will use a
scheme to map this state space into a more tractable state space in our numerical compu-
tations. The action space is (Accept, Reject). We now present the AC algorithm developed
to solve the ARM problem.

2.3 AC algorithm and a benchmark

We present the steps in the main algorithm and then a benchmark based on value iteration.
Both will use the vanishing discount approach. We will refer to the main algorithm as
SM-DCAC (Semi-M arkov D iscounted Cost Actor C ritic) algorithm. SM-DCAC is a form
of modified policy iteration in which the policy is evaluated with only one iteration. See
[15] for more on this issue.

2.3.1 Steps in SM-DCAC

Step 1. For all l, where l ∈ S, and u ∈ A(l), set J(l) ← 0 and Q(l, u) ← 0. Set k, the
number of state changes, to 0. Set ρ, the estimate of the average reward per transition, to
0, and γ̄ to a value close to 0, e.g., 0.01. Set q0 to a large, computer-permissible, positive
value. Run the algorithm for kmax iterations, where kmax is chosen to be a sufficiently large
number. Start system simulation at any arbitrary state.
Step 2. Let the current state be i. Select action a with a probability of
exp(Q(i, a))/

∑
b∈A(i) exp(Q(i, b)). (This is called the Gibbs softmax method).

3

Step 3. Simulate action a. Let the next state be j. Let r(i, a, j) be the immediate reward
earned in going to j from i under a and t(i, a, j) the time in the same transition. Set
k ← k + 1 and update J as follows:

J(i) ← (1− µ)J(i) + µ [r(i, a, j) + exp(−γ̄t(i, a, j))J(j)] . (1)

Step 4. Update Q(i, a) using a step size, η, decayed slower than µ:

Q(i, a) ← Q(i, a) + η [r(i, a, j) + exp(−γ̄t(i, a, j))J(j)− J(i)] . (2)

If Q(i, a) < −q0, set Q(i, a) = −q0. And if Q(i, a) > q0, set Q(i, a) = q0. In general, the
step-sizes should satisfy the following rule [6]: lim supk→∞ ηk/µk = 0.
Step 5. If k < kmax, set i ← j and then go to Step 2. Otherwise, go to Step 6.
Step 6. For each l ∈ S, select d(l) ∈ arg maxb∈A(l) Q(l, b). The policy (solution) generated
by the algorithm is d̂. Stop.

Convergence of SM-DCAC: Let the (i, a)th element of the vector ~Q equal Q(i, a). It is
clear from the above description that a policy is associated with a given ~Q; the value function
associated with ~Q will be denoted by ~J ~Q. The following result shows that SM-DCAC will
converge to a stable solution.

Theorem 1 For any q0, the limits limk→∞ ~Jk and limk→∞ ~Qk for SM-DCAC exist with
probability 1.

Proof The result follows directly from Lemma 4.10 in [15].

The following result shows that the solution to which the algorithm will converge will in
fact be ε-optimal.

Theorem 2 If ~J ∗̄γ denotes the optimal value function, then with probability 1, there exists
a large enough q0 such that for any ε > 0, | ~J ~Q∞ − ~J ∗̄γ | < ε.

Proof The proof follows from mimicking that of Theorem 5.13 in [15]; the only point to be
noted is that their proof is for the MDP, and hence γ of their proof needs to be replaced by

γmax ≡ max
i∈S,a∈A(i)

∑

j∈S
p(i, a, j) exp(−γ̄t(i, a)). (3)

2.3.2 Steps in the value-iteration benchmark

This is based on the algorithm in [10], which is for SMDPs; for continuous-time MDPs, see
the algorithm in [8]. We will refer to the algorithm below as SM-DISC, short for Semi-
M arkov Discounted Cost algorithm. The steps have the following differences with the steps
in Section 2.3.1. The function J will not be needed here.
1. In Step 2, select action a with probability of 1/|A(i)|.
2. In Step 3, ignore the update of J(.), and in Step 4, update Q(i, a) as follows:

Q(i, a) ← (1− µ)Q(i, a) + µ

[
r(i, a, j) + exp(−γ̄t(i, a, j)) max

b∈A(j)
Q(j, b)

]
. (4)

4

Convergence of SM-DISC: The update in Eqn. (4) belongs the family:

Qk+1(i, a) = (1− µ)Qk(i, a) + µ
[
H(~Qk)(i, a) + wk

j (i, a)
]
, where

H(~Qk)(i, a) =
∑

j∈S
p(i, a, j)

[
r(i, a, j) + exp(−γ̄t(i, a, j)) max

b∈A(j)
Qk(j, b)

]
and (5)

wk
j (i, a) = r(i, a, j) + exp(−γ̄t(i, a, j))maxb∈A(j) Qk(j, b)−H(~Qk)(i, a). The Bellman equa-

tion of interest here is:
~Q = H(~Q). (6)

Theorem 3 If t(i, a, j) > 0 for all i, j ∈ S and all a ∈ A(i), and for γmax > 0, the
algorithm SM-DISC will converge to an optimal solution, i.e., a solution of the Bellman
equation in (6), with probability 1.

Proof We first show that the transformation H in (5) is contractive. From (5) and by
using definition in (3), for any (i, a),

|H(~Qk
1)(i, a)−H(~Qk

2)(i, a)| ≤ γmax| max
b∈A(j)

Qk
1(j, b)− max

b∈A(j)
Qk

2(j, b)|

≤ γmax|| ~Q1
k − ~Q2

k||∞.

Then it follows that ||H(~Q1
k
)−H(~Q2

k
)||∞ ≤ γmax|| ~Q1

k− ~Q2
k||∞, where 0 < γmax < 1 when

any t(i, a, j) > 0, and hence H has a unique fixed point. Hence H is also non-expansive.
Again, from (5) and by using definition in (3), we note that for any (i, a)

|H(~Qk)(i, a)| ≤ γmax|Qk(i, a)|+ max
i,a

|r̄(i, a)|

which implies that ||H(~Qk)||∞ = γmax|| ~Qk||∞ + D where D > 0 and 0 < γmax < 1 when
any t(i, a, j) > 0. This, along with standard stochastic approximation conditions common
in ADP, from Proposition 4.7 in [3] establishes that Qk(, .,) will remain bounded with
probability 1. Thus the iterate is bounded with probability 1 and H is non-expansive.
Then from Theorem 3.1(b) in [7], the algorithm should converge with probability 1 to a
fixed point of H. Since H is contractive, it has a unique fixed point, and hence the algorithm
converges to that fixed point, which is in fact the optimal solution.

We used the vanishing discount approach for the average-reward case, which implies that
the discounted algorithm will converge to average-reward optimality as γ̄ tends to 0.

3 Risk-sensitive AC algorithms

We now propose a variance-sensitive version of the AC algorithm presented above. We

first define: γµ̂(i) ≡ limk→∞
Eµ̂

[∑k

s=1
r̄2(xs,µ(xs))|x1=i

]

k . Then, from Theorem 1 of [12], the
corresponding long-run variance of rewards of the policy µ̂, starting at state i, is: σ2

µ̂(i) =
γµ̂(i)

βµ̂(i)−
(αµ̂(i))2

βµ̂(i) . It can be shown that σ2(.) is independent of the starting state for irreducible
and aperiodic Markov chains. The optimal policy for a variance-sensitive (risk-sensitive)
problem, according to [9], is one that maximizes ρµ̂ − θσ2

µ̂.

5

3.1 Vanishing discount procedure

There are two approaches to this: Method (I) and Method (II).

Method (I): Here we estimate ρ, the average reward per transition. Change the steps in
Section 2.3.1 as follows.
1. In Step 1, let ρ be the estimate of average reward per transition, and initialize it to 0.
2. In Step 3, use the following update for J(i).

J(i) ← (1− µ)J(i) + µ
[
r(i, a, j)− θ (r(i, a, j)− ρ)2 + exp(−γ̄t(i, a, j))J(j)

]
.

In Step 3, also update ρ as follows.

ρ ← (1− µ)ρ + µ

[
r(i, a, j) + kρ

k + 1

]
. (7)

3. In Step 4, update Q(i, a) as follows:

Q(i, a) ← Q(i, a) + η
[
r(i, a, j)− θ (r(i, a, j)− ρ)2 + exp(−γ̄t(i, a, j))J(j)− J(i)

]
.

Method (II): Here we also estimate the expected time of each transition and use it in
the calculations. Change the steps in Section 2.3.1 as follows.
1. In Step 1, let τ be the estimate of the expected transition time. Initialize it to a small
positive value. Also, initialize ρ to 0.
2. In Step 3, use the following update for J(i).

J(i) ← (1− µ)J(i) + µ×
[
r(i, a, j)− θ

(
r(i, a, j)− ρ

τ
t(i, a, j)

)2

+ exp(−γ̄t(i, a, j))J(j)

]
.

In addition to updating ρ (as shown in Method (I) above), also update τ as follows:

τ ← (1− µ)τ + µ

[
t(i, a, j) + kτ

k + 1

]
. (8)

3. In Step 4, update Q(i, a) as follows:

Q(i, a) ← Q(i, a) + η[r(i, a, j)− θ

(
r(i, a, j)− ρ

τ
t(i, a, j)

)2

+ exp(−γ̄t(i, a, j))J(j)− J(i)].

Convergence of Method (I): We consider the MDP case (with γ as the discounting
factor). The result can be extended easily to SMDPs. We also show that there is a bound
on the difference between the optimal value function and the value function generated by
the algorithm.

Theorem 4 The limits limk→∞ ~Jk and limk→∞ ~Qk for the risk-sensitive algorithm above
exist with probability 1 for any q0.

Proof The result follows directly from Lemma 4.10 in [15].

6

We now present a bound on the value function. It is based on the ideas in [15], but,
unfortunately, we cannot make it ε-small as done in their elegant proof. The reason is the
existence of ρ∗, the average reward of the optimal solution, in our equations. Let ρπ denote
the average reward of the policy π̂; then we define the following terms:

w∗(i, a) = θ
∑

j

p(i, a, j) (r(i, a, j)− ρ∗)2 ,

wπ(i, a) = θ
∑

j

p(i, π(i), j) (r(i, π(i), j)− ρπ)2 .

which allows to define the Bellman equation of interest here

J∗γ (i) = max

r̄(i, a)− θw∗(i, a) + γ

∑

j

p(i, a, j)J∗γ (j)

 ∀i.

The vector J∗γ will denote the optimal value function. This equation can be solved, provided
ρ∗ is known, and has a unique solution. Also, if π(i, a) denotes the probability of selecting
action a in state i when policy π̂ is pursued, then consider the following equation: ∀i

Jπ(i) =
∑
a

π(i, a)

r̄(i, a)− wπ(i, a) + γ

∑

j

p(i, a, j)Jπ(j)

 .

Theorem 5 || ~Jπ − ~J∗γ ||∞ ≤ K 2
(1−γ)2

.

Proof It is clear that maxi |Jπ(i)| ≤ r̄(i, a)− wπ(i, a) + γ maxj |Jπ(j)|, which implies that
|| ~Jπ||∞ ≤ K

1−γ where K = maxi,a,π̂ |r̄(i, a)−wπ(i, a)|. We now define the following transfor-
mation on vector ~x: ∀i,

T (x(i)) = max
a

r̄(i, a)− w∗(i, a) + γ

∑

j

p(i, a, j)x(j)

 .

It is easy to extend Lemma 5.11 in [15] to establish that:

|| ~Jπ − ~J∗γ ||∞ ≤ (1− γ)−1||T ~Jπ − ~Jπ||∞. (9)

Then, it follows that for every i,

|TJπ(i)− Jπ(i)| = |max[r̄(i, a)− w∗(i, a) + γ
∑

j

p(i, a, j)J∗γ (j)− ~Jπ(i)]|

≤ |r̄(i, a)− w∗(i, a)|+ γ|
∑

j

p(i, a, j)J∗γ (j)|+ | ~Jπ(i)

≤ K +
γK

1− γ
+

K

1− γ
= K

2
1− γ

.

It follows that ||T ~Jπ − ~Jπ||∞ ≤ K 2
1−γ . Then this combined with (9) implies that || ~Jπ −

~J∗γ ||∞ ≤ K 2
(1−γ)2

.

7

3.2 Undiscounted procedure

We now suggest an approach that does not use a discount factor. It requires in each iteration
the estimate of the variance, something that is avoided in the vanishing discount procedure.
The changes to the steps in Section 2.3.1 are as follows:
1. In Step 1, initialize each of % and ρ to 0 and τ to a small positive value.
2. In Step 3, define ψ = ρ

τ − θ [%−ρ2]
τ . Then update J(i) as follows:

J(i) ← (1− µ)J(i) + µ
[
r(i, a, j)− θ (r(i, a, j)− ρ)2 − ψt(i, a, j) + J(j)

]
.

In addition to updates of ρ (Eqn. (7)) and τ (Eqn. (8)), also update % as follows:

% ← (1− µ)% + µ

[
[r(i, a, j)]2 + k%

k + 1

]
.

3. In Step 4, update Q(i, a) using ψ as defined above:

Q(i, a) ← Q(i, a) + η
[
r(i, a, j)− θ (r(i, a, j)− ρ)2 − ψt(i, aj) + J(j)− J(i)

]
.

By setting θ = 0, one obtains a Semi-M arkov Average Cost Actor C ritic (SM-AC2)
algorithm.

4 Numerical results

4.1 ARM

We present one numerical example as a vehicle to compare the performance of SM-DCAC,
SM-DISC, and EMSR (the heuristic; for more details on this, see [14]).

• The flight has three fare classes, and the fare structure is FS = (f1, f2, f3, b), where
fi is the fare of the ith class. f1 = $199, f2 = $275, f3 = $350. $400 is the bumping
cost. A lower value of i stands for a lower revenue fare class.

• The customer arrival process is Poisson with parameter 1.4 passengers per day, and
the booking horizon is 100 days long. Probability that the customer is of class 1 is
0.7, and that he/she is of class 2 is 0.2.

• The capacity of the aircraft is 100.

• Every customer belonging to class i has a probability of pi
c of canceling the trip and

the time of cancelation is uniformly distributed between the time of sale and the time
of flight departure. p1

c = 0.1; p2
c = 0.2; p3

c = 0.3.

• The cancelation penalties are: Class 1 (lowest fare): $100, Class 2 (medium fare):$
50, and Class 3 (highest fare): $ 10.

• The function approximation scheme used is described in [11]. We used the following
rules for the step sizes: µk = 0.01 log(k+1)

k+1 ; ηk = 0.01
k+1 .

The results are shown in Table 1.

8

Table 1: Sample problem showing a comparison of the average revenue (dollars per day)
using EMSR, SM-DCAC, and SM-DISC.

ρEMSR ρSM−DCAC ρSM−DISC

211.11 220.45 217.10

4.2 Small Risk-Sensitive MDPs

Consider a 2-state MDP in which two actions are allowed in each state. Additionally, all
the Markov chains are regular. P(a) will denote the transition probability matrix asso-
ciated with action a, and R(a) will denote the transition reward matrix associated with
action a. The element in the ith row and jth column of P(a) will equal p(i, a, j), and the
corresponding element in R(a) will equal r(i, a, j).

P(1) =
[
0.7 0.3
0.4 0.6

]
;P(2) =

[
0.9 0.1
0.2 0.8

]
;

R(1) =
[
6.0 −5
7.0 12

]
;R(2) =

[
5.0 68
−2 12

]
.

Policy ρ σ2

(1,1) 5.828571 30.142041
(1,2) 8.625000 31.284375
(2,1) 11.04000 287.23840
(2,2) 10.95000 187.54750

Table 2: The average reward and variance (σ2) of all policies associated are shown above.
The risk-neutral-optimal policy has its parameters typed in bold. Note that it also has the
highest variance.

We used θ = 0.15. The optimal action for the risk-sensitive problem is 1 in state 1
and 2 in state 2. This can be determined by exhaustive enumeration. See Table 2 that
lists the mean and variance via exhaustive enumeration. Method (I) and the undiscounted
procedure converged to the optimal solution in a maximum of 100 iterations. The step-size
rules used were: µk = log(k+1)

k+1 ; ηk = 0.001
k+1 .

5 Conclusions and future work

AC algorithms have been restricted to MDPs and risk-neutral objective functions. The main
contribution here is to present an AC algorithm for (i) the SMDP model that can solve the
ARM problem and (ii) for risk-sensitive objective functions. We showed convergence for
the AC algorithm (SM-DCAC), and also a convergence analysis for a value-iteration-based
algorithm for the SMDP (SM-DISC). In addition, we also presented an average reward AC
algorithm for SMDPs (SM-AC2). We showed some numerical results with our algorithm

9

using the SM-DCAC and SM-DISC, both of which used a simple function approximation
scheme. We wish to expand the scope of the numerical study. In future (i) we intend
to test the risk-sensitive algorithms on risk-sensitive versions of the ARM problem, (ii)
prove convergence of SM-AC2, and (iii) use a neural-network-based function-approximation
scheme described next. It will be interesting to use this algorithm on the network version
of this problem where risk-neutral ADP has already been used and tested [20, 21].

Function approximation for the AC framework can be done using the Bellman error
method proposed in Werbos [25, 26]. We will assume that the J-values and Q-values will
be stored in artificial neural networks (ANNs), i.e., J(i, ~w1) and Q̃(i, a, ~w2) will denote
the J-value and Q-value, respectively, where ~w1 and ~w2 denote the neural-network weights
associated with J and Q respectively. In the context of the algorithm, then, there are two
types of errors to minimize.

BE1 =
1
2

∑

i

[
J(i)− J̃(i, ~w1)

]2
and BE2 =

1
2

∑

i,a

[
Q(i, a)− Q̃(i, a, ~w2)

]2
.

The generalized gradient-descent algorithm within the ANN will be: w(l) ← w(l) + µ∂BE
∂w

for the lth weight. Using calculus, the single-sample update in Step 3 for updating the
J-values becomes ∀l:

w1(l) ← w1(l) + µ∇J̃(i, ~w1)×
(
r(i, a, j) + exp(−γ̄t(i, a, j))J̃(j, ~w1)

)
.

And that for updating the Q-values in Step 4 becomes ∀l:

w2(l) ← w2(l) + η∇Q̃(i, a, ~w2)×
(
r(i, a, j) + exp(−γ̄t(i, a, j))J̃(j, ~w1)− J̃(i, ~w1)

)
.

Also, the values of ∇J̃(i, ~w1) and ∇Q̃(i, a, ~w2) depend on the ANN architecture.

ACKNOWLEDGMENTS: The author thanks Dr. Paul J. Werbos at the National
Science Foundation for enlightening discussions on adaptive critics and for pointing out
some key references — in particular [27] — that led to this work.

References

[1] A.G. Barto, R.S. Sutton, and C.W. Anderson. Neuronlike elements that can solve diffi-
cult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,
13:835–846, 1983.

[2] P.P. Belobaba. Application of a probabilistic decision model to airline seat inventory
control. Operations Research, 37:183–197, 1989.

[3] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

[4] V. Borkar. Q-learning for risk-sensitive control. Mathematics of operations research,
27(2):294–311, 2002.

10

[5] V. Borkar and S. Meyn. Risk sensitive optimal control: existence and synthesis for
models with unbounded cost. Mathematics of Operations Research, 27(1):192–209,
2002.

[6] V. S. Borkar. Stochastic approximation with two-time scales. Systems and Control
Letters, 29:291–294, 1997.

[7] V. S. Borkar. Asynchronous stochastic approximation. SIAM J. Control Optim., 36
No 3:840–851, 1998.

[8] S.J. Bradtke and M. Duff. Reinforcement learning methods for continuous-time Markov
decision problems. In Advances in Neural Information Processing Systems 7. MIT
Press, Cambridge, MA, 1995.

[9] J. Filar, L. Kallenberg, and H. Lee. Variance-penalized Markov decision processes.
Mathematics of Operations Research, 14(1):147–161, 1989.

[10] A. Gosavi. Simulation-Based Optimization:Parametric Optimization Techniques and
Reinforcement Learning. Kluwer Academic Publishers, Boston, MA, 2003.

[11] A. Gosavi. A reinforcement learning algorithm based on policy iteration for average
reward: Empirical results with yield management and convergence analysis. Machine
Learning, 55(1):5–29, 2004.

[12] A. Gosavi. A risk-sensitive approach to total productive maintenance. Automatica,
42:1321–1330, 2006.

[13] A. Gosavi, N. Bandla, and T. K. Das. A reinforcement learning approach to a single
leg airline revenue management problem with multiple fare classes and overbooking.
IIE Transactions, 34:729–752, 2002.

[14] A. Gosavi, E. Ozkaya, and A. Kahraman. Simulation optimization for revenue manage-
ment of airlines with cancellations and overbooking. OR Spectrum, 29:231–38, 2007.

[15] V.R. Konda and V. S. Borkar. Actor-critic type learning algorithms for Markov decision
processes. SIAM Journal on Control and Optimization, 38(1):94–123, 1999.

[16] K. Littlewood. Forecasting and control of passenger bookings. In Proceedings of the
12th AGIFORS (Airline Group of the International Federation of Operational Research
Societies) Symposium), pages 95–117, 1972.

[17] H Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

[18] S. M. Ross. Applied Probability Models with Optimization Applications. Dover, 1992.

[19] S. Shervais and T. T. Shannon. Improving quasi-optimal inventory and transportation
policies using adaptive critic based apprximate dynamic programming. In Proceedings
of 2000 International Conference on Systems, Man, and Cybernetics, Nahsville, TN,
2000.

11

[20] V. Singh. A stochastic approximation approach to an airline network revenue manage-
ment problem. Master’s thesis, University of South Florida, Dept. of Industrial and
Management Systems Engineering, Tampa, FL, 2002.

[21] V. Singh, T.K. Das, A. Gosavi, and B. Mohan. Algorithms for airline network seat
revenue management via reinforcement learning. Working paper at the University of
South Florida, Industrial and Management Systems Engineering Dept, Tampa, FL.

[22] R. Sutton and A. G. Barto. Reinforcement Learning. The MIT Press, Cambridge,
Massachusetts, 1998.

[23] K. Talluri and G. van Ryzin. The Theory and Practice of Revenue Management. Kluwer
Academic, Boston, MA, 2004.

[24] G. Venayagamoorthy, R. Harley, and D. Wunsch. Comparison of heuristic dynamic
programming and dual heuristic programming adaptive critics for neuro-control of a
turbogenerator. IEEE Transactions on Neural Networks, 13 (3):764–773, 2002.

[25] P. J. Werbös. Building and understanding adaptive systems: A statistical/numerical
approach to factory automation and brain research. IEEE Transactions on Systems,
Man., and Cybernetics, 17:7–20, 1987.

[26] P. J. Werbös. Consistency of HDP applied to a simple reinforcement learning problem.
Neural Networks, 3:179–189, 1990.

[27] P. J. Werbös. Approximate dynamic programming for real-time control and neural
modeling. In Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches,
pages 493–525. Van Nostrand, NY, 1992.

12

