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1 Notation

We assume that we have a single-channel queue, i.e., there is only one waiting line. See

Figure 1.
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Figure 1: A single-channel, single-server queue, which has three customers waiting in the

queue (line) and one being served at the instant this photo is shot

e \: mean rate of arrival and equals 1/FE/[Inter-arrival-Time|, where E|.] denotes the

expectation operator.

e 4 mean service rate and equals 1/E[Service-Time]

e ¢: number of servers in parallel

e p = \/(cu): utilization of the server; also the probability that the server is busy or the

proportion of time the server is busy

e P,: probability that there are n customers in the system

e [: mean number of customers in the system
e [L,: mean number of customers in the queue
e W: mean waiting time in the system

e I¥,: mean waiting time in the queue

e (2 squared coefficient of variation of a random variable; C? =

e (2 squared coefficient of variation of service time

S

e C2: squared coefficient of variation of inter-arrival time

e 02: variance of service time

Variance

(Mean)?



2 Two Moment Approximations

This tutorial is written to explain the basics of two-moment approximations that are very
popular in industry for obtaining queueing estimates, i.e., the mean waiting time in a queue
and the mean length of a queue. These approximations can usually only provide means of
outputs, i.e, waiting times and queue lengths, based on three inputs in a standard queue:
(i) the mean and variance of the inter-arrival time, (ii) the mean and variance of the service
time, and (iii) the number of servers. This situation arises frequently in factories, airports,
and hospitals, where limited data, i.e., only means and variances of the inputs, are available.

Note that the mean is the so-called first moment. Thus, if a random variable is denoted
by X, the first moment, E[X], is the mean, while the variance is E[X?] — (E[X])*, where
E[X?] is the so-called second moment. Thus, the variance is not the second moment, but
rather the second moment minus the square of the mean. While the approximations studied
in this tutorial are technically called two-moment approximations, we really only need the
mean and the variance, and the calculation of the second moment is not needed.

3 Basic Queueing Formulas

Little’s rule provides the following results:
L =AW; Ly = \Wy;

the first of the above applies to the system and the second to the queue, which is a part of
the system. Another useful relationship in the queue is:

1
W:Wq‘Fp; (1)

the above is intuitive (we prove it later): it says the mean wait in the system is the sum of
the mean wait in the queue and the service time (1/pu).

4 Queueing Notation

The following notation is used for representing queues: A/B/c/K where A denotes the
distribution of the inter-arrival time, B that of the service time, ¢ denotes the number of
servers, and K denotes the capacity of the queue. If K is omitted, we assume that K = cc.

M stands for Markov and is commonly used for the exponential distribution. Hence an
M/M/1 queue is one in which there is one server (and one channel) and both the inter-
arrival time and service time are exponentially distributed. An M/G/1 queue is one with
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one server in which the inter-arrival time is exponentially distributed and the service time is
generally distributed, i.e., the service time has any given distribution. A G/G/1 queue is one
with one server in which both service and the inter-arrival time have any given distribution.

5 Single-Server Queues

We first consider single-server queues first where ¢ = 1. They arise in many manufacturing
and service systems.

5.1 Formulas

For the M/M/1 queue, we can prove that (Ross, 2014)

p
L,= .
q 1 _ p
For the M/G/1 queue, we can prove that
202 4 2
L, = o, tp
2(1-p)

The above is called the Pollazcek-Khintichine formula (named after its inventors and discov-
ered in the 1930s; see Ross (2014)).

For the G/G/1 queue, we do not have an exact result. The following approzimation (derived
in Marchal (1976)) is popular in industry:

AL+ C)(C+ CY) o)
T 21— p)(1+p2C2)
In the above, if the mean rate of arrival is A and 02 denotes the variance of the inter-arrival
time, then:

L

2
2 Ua

Co=ne

Similarly, if ;1 denotes the service rate and o2 denotes the variance of the service time, then:




Another approximation from Kraemer and Langenbach-Belz (1976) is also quite powerful:

_PCE+CY)

L (3)

To2(1-p)
where 201 (1 o2y
B - P ) 2
Y exp( 30(C2 + C2) ) when C} < 1; (4)
(1-p(1-C2)
g = exp ( e when C2 > 1. (5)

5.2 Useful Facts

e If p > 1 in a queue where either the inter-arrival or service time or both are random,
the queue becomes unstable, i.e., the length of the queue and the wait become infinity.
If both are constants, p > 1 implies instability. Such queues need additional servers
for stability.

e If the random variable X is uniformly distributed with parameters (a,b), where a is

the minimum value and b the maximum value, then the mean of X is (a4 b)/2 and the
(b—a)?

variance 18 2

e If the random variable X is uniformly distributed with parameters (a,b), where a is

the minimum value and b the maximum value, then the mean of X is (a+b)/2 and the

(b—a)?

variance 1s 12

e For the exponential distribution if the mean if 1/), the variance is 1/\2.

e When a variable is deterministic, e.g., inter-arrival time is fixed, its variance is zero
and hence so is its coeflicient of variation.

e Consider two random variables, X and Y. Then if E[.] denotes the mean and V]
denotes the variance, then

EX+Y]=EX|+ E[Y]
thus if X is the wait in the queue and Y is the service time, we have W = W, + E[Y] =
Wy + i, which was Equation (1).

5.3 Examples

Example 1: Consider the following single-server queue: the inter-arrival time is expo-
nentially distributed with a mean of 10 minutes and the service time is also exponentially
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distributed with a mean of 8 minutes, find the (i) mean wait in the queue, (ii) mean number
in the queue, (iii) the mean wait in the system, (iv) mean number in the system and (v)
proportion of time the server is idle.

Solution: We have an M/M/1 system. We also have: A = 1/10; u = 1/8. Hence, p = 8/10.
Then:

0> B 0.82 _
1—-p 1-08
Wait in the Queue =W, = L,/\ = 32 mins.
Wait in the System =W = W, 4+ 1/u = 40 mins.

Number in the System = L = AW = 4.

3.2.

Number in the Queue = L, =

Proportion of time the server is idle =1 — p =0.2.

Example 2: Consider the following single-server queue: the inter-arrival time is exponen-
tially distributed with a mean of 10 minutes and the service time has the uniform distribution
with a maximum of 9 minutes and a minimum of 7 minutes, find the (i) mean wait in the
queue, (ii) mean number in the queue, (iii) the mean wait in the system, (iv) mean number
in the system and (v) proportion of time the server is idle.

Solution: We have an M/G/1 system. We also have: A = 1/10; the mean service time will be
(7+9)/2 = 8, i.e., u = 1/8. The variance of the service time, o2 will equal (9—7)?/12 = 1/3.
Also, p = 8/10. Then:

Number in the queue = L, = w
2(1—p)
Wait in the queue = W, = L,/ = 16.08 mins.
Wait in the system =W =W, + 1/u = 24.08 mins.
Number in the system = L = AW = 2.408.

= 1.608.

Proportion of time the server is idle =1— p=0.2.

Example 3: Consider the following single-server queue: the inter-arrival time has a gamma
distribution with a mean of 10 minutes and a variance of 20 min?. The service time has the
normal distribution with a mean of 8 minutes and a variance of 25 min? | find the (i) mean
wait in the queue, (ii) mean number in the queue, (iii) the mean wait in the system, (iv)
mean number in the system and (v) proportion of time the server is idle. Simulation results
indicate W, to be about 8.1 minutes.

We have a G/G/1 system. We also have: A = 1/10; the variance of the inter-arrival time is

20. The mean service time will be 8, i.e., u = 1/8. The variance of the service time, o2 is



25. Also, p = 8/10. Then,

2 2

c2=_%a__g9.02=_Ts_ _ (3906

SN T T (e

Now using Marchal’s approximation:

_ PP+ (G +p°CF)

Number in the Queue via Equation (2) = L, = 21 p)(1+ 207 = 0.8010.
- P p-Ls

Wait in the queue = W, = L,/\ = 8.01 mins ~ 8.1 mins, which is the simulation estimate.
Wait in the system =W =W, + 1/p = 16.01 mins.
Number in the system = L = AW = 1.601.
Proportion of time the server is idle =1 — p =0.2.
Using the Kramer-Langenbach-Belz approximation in Equation (3), we have:

PG+ CY)

L, ~
To2(1-p)

g = 0.9450¢g

where since C? < 1, via Equation (4),

—2(1 - p)(l - 03)2
( 3p(03 + CSQ) 3

Then, L, = 0.9450(0.8348) = 0.7889, which implies W, = L,/A = 0.7889(10) = 7.889 mins,

which is also reasonably close to the simulation estimate of 8.1 mins.

6 Multiple-Server Queues

We will only consider the identical (homogenous) server case in which there are ¢ identical
servers in parallel and there is just one waiting line (i.e., the queue is a single-channel queue).
Let ¢ denote the number of identical servers. Here

p=—
cp

For the M/M/c queue (Ross, 2014),



where

P=1/]Y <C£)!m . (<fp_)cp) | (1)

m=0

Note that Py denotes the probability that there are 0 customers in the system.

Hence, W, can be obtained as follows:
Wy = Ly/ A

Then, for the G/G/c queue, we have the following approximation (Whitt, 1976; Medhi,
2003):
C2+C? .
= 0
where W/B/¢ denotes the waiting time in the queue for the A/B/c queue. The above works
well for M/G/c queues, but does not always work well when the inter-arrival time is not
exponentially distributed.  For multi-server queues, it has been shown that data on two
moments is usually not sufficient to generate good approximations for the mean waiting time
or queue length (Gupta et al , 2010). When the distributions are known, it is often possible
to deduce expressions for these metrics, but they often involve calculus and computational
methods (see Kahraman and Gosavi (2011) for one such situation in bulk queues and Medhi
(2003) for general discussions, including the Lindley equation).

WqG/G/c ~ Wq]\/[/M/c

Example 4: Consider the following scenario: the inter-arrival time has an exponential
distribution with a mean of 10 minutes. There are two servers, and the service time of each
server has the uniform distribution with a maximum of 20 minutes and a minimum of 10
minutes, find the (i) mean wait in the queue, (ii) mean number in the queue, (iii) the mean
wait in the system, (iv) mean number in the system and (v) proportion of time the server
is idle. Results from discrete-event simulation, which are known to be very accurate, show
that the mean waiting time in the queue is 9.5693 minutes. Compute the error in the G/G/c
approximation.

Solution: This is an M/G/2 system. We have A = 1/10; the C? = 1 as a result. The mean
service time will be (10 4 20)/2 = 15, i.e., u = 1/15. The variance of the service time, o2
will equal (20 — 10)?/12 = 8.33. Also, p = 15/(2 x 10) = 0.75. Then:

02

C? = (1/;)2 = 8.33/(15)% = 0.03.

Using the G/G/c approximation, we first assume the queue to be an M/M/c queue and

compute its L,: Now using the formula above in Eqn. (7): Py = 0.1453. Then, using Eqn.
1/10y2

(6), we have that L, = “o2is) 975 _ 4 999 Then, W, = L,/A = 1.929 x 10 = 19.29.

1/15
21(1—0.75)2



Now, we need to transform this to an G/G/2 queue using the approximation in Eqn. (8):

WqG/G/c ~ Wq]\J/M/c

(72 (72
a;rs = (19.20)(1 + 0.03)/2 = 9.93.

Then, Lf/G/C = I/VqG/G/C X A =9.93 x 1/10 = 0.993. The error in the approximation is:

19.9376 — 9.5693|
9.9376
Wait in the System =W = W, 4+ 1/u = 9.93 + 15 = 24.93 mins.
Number in the System = L = AW = 2.493.

x 100% = 3.07%.
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Exercises:

1. Consider a single-server queue with a gamma distributed inter-arrival time which has a mean of 10
minutes and variance of 20 minutes-squared. The service time is uniformly distributed between 6 and
7 minutes. From simulations, W has been estimated to be 0.612 minutes. Compute W, using (a)
Marchal’s approximation and (b) the Kraemer-Langenbach-Belz approximation. Compute the error
in each estimate from simulation.

2. Consider a multi-server queue with 5 servers in parallel. FEach server has a normally distributed
service time with a mean of 16.67 minutes and a standard deviation of 1 minute. The inter-arrival
time is exponentially distributed with a mean of 5 minutes. The simulator provides an estimate of
1.99 minutes for W,. Use the queueing approximation discussed above to generate a value for W, and
compare it to the simulation estimate.



