
Model-building Semi-Markov Adaptive Critics
Abhijit Gosavi

Department of Engineering
Management & Systems Eng.

Missouri S & T
Rolla, Missouri 65401

Email: gosavia@mst.edu

Susan L. Murray
Department of Engineering

Management & Systems Eng.
Missouri S & T

Rolla, Missouri 65401
Email: murray@mst.edu

Jiaqiao Hu
Department of Applied Mathematics

and Statistics
Stonybrook University

Stonybrook, New York 11794-3600
Email: jqhu@ams.sunysb.edu

Abstract—Adaptive or actor critics are a class of reinforcement
learning (RL) or approximate dynamic programming (ADP)
algorithms in which one searches over stochastic policies in
order to determine the optimal deterministic policy. Classically,
these algorithms have been studied for Markov decision processes
(MDPs) in the context of model-free updates in which transition
probabilities are avoided altogether. A model-free version for
the semi-MDP (SMDP) for discounted reward in which the
transition time of each transition can be a random variable was
proposed in Gosavi [1]. In this paper, we propose a variant in
which the transition probability model is built simultaneously
with the value function and action-probability functions. While
our new algorithm does not require the transition probabilities
apriori, it generates them along with the estimation of the
value function and the action-probability functions required in
adaptive critics. Model-building and model-based versions of
algorithms have numerous advantages in contrast to their model-
free counterparts. In particular, they are more stable and may
require less training. However the additional steps of building the
model may require increased storage in the computer’s memory.
In addition to enumerating potential application areas for our
algorithm, we will analyze the advantages and disadvantages of
model building.

I. INTRODUCTION

Historically, the science of approximate dynamic program-
ming (ADP) and reinforcement learning (RL) has evolved
from the so-called functional equations of Bellman [2] and
Howard [3], through research in “adaptive systems” [4], to
ADP/RL and simulation-based optimization of MDPs [5], [6],
[7], [8], [9], [10], [11]. The main goal has been to solve the
Markov decision process (MDP) or some variant of the MDP
for a given objective function, e.g., discounted reward, average
reward, or total reward, over a finite or infinite horizon.

The so-called model-free algorithms have dominated the
landscape of ADP/RL. These algorithms can work in sim-
ulators or in real time without the need for generating the
transition probabilities of the Markov chains underlying the
MDP. The main reason for this domination, of course, is
that the key motivation of ADP/RL is to avoid the transition
probabilities that lead to the curse of modeling. The curse
of modeling implies that it is difficult in many real-world
problems to determine the transition probabilities. However,
it has been found that a class of algorithms, called model-
building or model-based algorithms, in which the model is
built along with the value function, can be very effective in
solving certain problems, especially in the field of artificial

intelligence, robotics, and recently in aviation control. The
model-building algorithms can be traced to the work of Barto
et al. [12] (their algorithm was dubbed RTDP, short for Real
Time Dynamic Programming) and Tadepalli and Ok [13] (their
algorithm was called H-Learning).

The adaptive or actor critic is one of the oldest algorithms
in ADP/RL. It was first proposed in Barto et al. [14] for
discounted reward MDPs in the model-free context. It predates
the more popular Q-Learning algorithm [15]. The convergence
of the adaptive critic was proved under some conditions in
Konda and Borkar [16]. This algorithm was extended to the
semi-MDP (SMDP) in [1], in which the transition time does
not have to be identical for each transition, but rather can be
a random variable. An assumption was also made in [1] that
the immediate reward is earned as a lump sum at the start of
every transition.

Hernández and Fernandez [17] also solve the problem
considered in this paper via an adaptive critic algorithm.
However, their algorithm exploits a uniformization approach.
This approach, although well-understood in dynamic program-
ming, is novel in the context of ADP/RL. Furthermore, their
algorithm belongs to the so-called TD(λ) framework, which
is more general than the one we use (TD(0)). The reader is
urged to read this paper as an alternative solution model for
the problem we consider.

The reader is also referred to an interesting paper by
Bhatnagar and Panigrahi [18], which presented a model-free
adaptive critic for hierarchical MDPs. They present a rigorous
convergence analysis of their algorithm, but the problem stud-
ied in their paper has multiple decision makers (hierarchical
decision making) unlike ours. Also, if their algorithm is
adapted to our single decision-maker setting, it would result
in a different mechanism for discounting. Unlike their model
where the effective discount factor is the discount factor
of MDPs (per transition) raised to a power that equals the
number of state transition, we consider a time-continuous
discounting process for semi-Markov control that requires the
use of the exponential function (see [19] for more on this in
the context of discounted semi-Markov control); further, our
algorithm seeks to build the transition probability model, i.e.,
the expected immediate rewards and transition times, unlike
theirs which is model-free.

In this paper, we combine the notions of model building

within that of an adaptive critic framework for discounted re-
ward SMDPs. Model-building algorithms within a Q-Learning
framework have been proposed in Gosavi [20], [21]. We first
discuss some recent applications of model building algorithms
(Section II). Thereafter, we discuss the potential advantages
and disadvantages of model building in contrast to their model-
free counterparts (Section III). Then, we present step-by-step
details of our new algorithm (Section IV). We present some
numerical results in Section V, and discuss some convergence
properties in Section VI. We conclude the paper with a
discussion on future work (Section VII).

II. APPLICATIONS OF MODEL BUILDING

In this section, we provide some motivating examples of the
use of model building. Many field tests of ADP/RL appear to
exploit the model. Recently, model-building ADP/RL has been
used in aviation control, in particular in unmanned helicopter
control [22], [23]. These studies include the application of
ADP/RL algorithms to train a helicopter to perform certain
actions. It is known that with sufficient training pilots can pre-
vent a helicopter from crashing by performing an emergency
procedure known as autorotation. In this procedure, the pilot
has to control the helicopter such that potential energy from
altitude is transferred to rotor speed. Ensuring a certain speed
is critical for landing safely.

Studies of the human brain via fMRI studies [24], [25] have
used model-building RL algorithms rather than their model-
free counterparts. The study of the human brain is an important
topic in neuro-science. RL models are being increasingly used
to understand how the brain functions. It turns out the model-
building RL algorithms find preference in modeling these
complex tasks.

A recent case study of high-speed obstacle avoidance [26]
also uses model-building ADP/RL. Finally, a case study of
robotic soccer in which model-building reinforcement learning
is used can be found in [27]. One of the first papers in this
area [13] used a model-building algorithm for training an
automated guided vehicle to perform an important task of
selecting jobs in an automation environment. Although the
number of applications of model-building RL is significantly
smaller than the corresponding number for model-free RL, it
is clear that interest in model-building RL has not died and in
fact appears to be increasing.

III. ADVANTAGES AND DISADVANTAGES OF MODEL
BUILDING

Numerous tests have showed that model-building algorithms
are more stable than their model-free counterparts (see e.g.,
[13]). In other words, they are less likely to converge to
sub-optimal solutions. Model-based algorithms are also less
susceptible to the need for tuning step sizes properly. And last
but not the least, one reason for the failure of neural networks
as function approximators with model-free algorithms like Q-
Learning is the simulation noise inherent in these algorithms.
Interestingly, this was highlighted some time back in [28] and
[29]. Model-based algorithms, which have less noise in their

main updates, can potentially overcome this difficulty when
combined with neural networks.

However, model-based algorithms also come with some
disadvantages. First, they require an additional step of building
the model. Second, the building of the model in conjunction
with function approximation can pose serious challenges.
Finally, their computational burden is also higher than that of
their model-free counterparts. This will be explained below.

IV. NEW ALGORITHM

We now present some background for model building. We
begin with some notation. Let S denote the finite set of states,
A(i) the finite set of actions permitted in state i, and d(i)
the action chosen in state i when policy d is pursued, where
∪i∈SA(i) = A. Further let

r(., ., .) : S ×A× S → <
denote the one-step immediate reward and

p(., ., .) : S ×A× S → [0, 1]

denote the associated transition probability. Then the expected
immediate reward earned in state i when action a is chosen
in it can be expressed as:

r̄(i, a) =
|S|∑

j=1

p(i, a, j)r(i, a, j). (1)

The goal in Markov control is to maximize the value
function for every i ∈ S over the set of all Markovian policies.

For the semi-Markov case, if one assumes that the rewards
are acquired as a lump sum at the end of the transition, for
the discount factor, one must use

exp(−γ̄τ)

where γ̄ is the rate of discounting and τ is the duration of time
period over which one discounts (see [19]). Also the time spent
in each state is defined as follows:

t(., ., .) : S ×A× S → < (2)

and denotes the time of one transition. The expected transition
time from state i when action a is chosen in it can be expressed
as:

t̄(i, a) =
|S|∑

j=1

p(i, a, j)t(i, a, j).

Model building in the literature has classically been based
on the notion of computing counters that store the number
of times a state-action pair has been tried and the number of
times it has led to a given state, i.e., when one tries action a
in state i and transitions to j in the simulator, one increments
two counters:

Na(i) ← Na(i) + 1;

Wa(i, j) ← Wa(i, j) + 1.

The transition probability p(i, a, j) is then estimated as:

p̃(i, a, j) = Wa(i, j)/Na(i).

While this is intuitively appealing, both counters, N(.) and
W (.) increase continuously to infinity as the simulation pro-
gresses, and must be stored as look-up tables, thus, ruling out
combination with neural networks.

We now discuss the main updates in our new algorithm. We
will suppress the superscript k in the notation for the iterates,
e.g., J(i), and the step sizes e.g., µ.

We will assume that the action-selection distribution P (i, a)
(i.e., a distribution function over the set of admissible actions
of the current state i) can be parameterized in the form

P (i, a) = exp(β(i, a))/
∑

b∈A(i)

exp(β(i, b))

∀a ∈ A(i). Also, our value function J(i) will be updated as
follows:

J(i) ← J(i) + µ×
[
r̃(i, a)− J(i) + exp(−γ̄t̃(i, a))

∑

l∈S
p̃(i, a, l)J(l)

]
. (3)

The action-selection parameter for action a in state i will be
updated as follows ensuring that β(i, a) remain bounded:

β(i, a) ← β(i, a) + η×
[
r̃(i, a)− J(i) + exp(−γ̄t̃(i, a))

∑

l∈S
p̃(i, a, l)J(l)

]
. (4)

The above does not ensure that β(i, a) can remain bounded.
One way to work around this is to artificially bound these
values as follows: Let β∗ > 0 be a large number such that
exp(β∗) is a number that the computer can handle without
error. If β(i, a) < −β∗, set β(i, a) = −β∗ and if β(i, a) > β∗,
set β(i, a) = β∗.

Finally, the immediate reward, the transition time, and the
transition probabilities will be updated as follows:

r̃(i, a) ← (1− θ)r̃(i, a) + θr(i, a, j) (5)

t̃(i, a) ← (1− θ)t̃(i, a) + θt(i, a, j); (6)

p̃(i, a, j) ← p̃(i, a, j) + θ[1− p̃(i, a, j)]. (7)

p̃(i, a, l) ← p̃(i, a, l)− θ
1− p̃(i, a, j)
|S| − 1

; for all l 6= j. (8)

In general, the step-sizes should satisfy the following rule
required in multiple time scales [30]:

lim sup
k→∞

ηk/µk = 0; lim sup
k→∞

θk/ηk = 0, (9)

where we use the superscript, k, to indicate that the step sizes
change with every iteration. This ensures that the updating
is separated on the time scales and yet it can be done
simultaneously. We note that we have tested these ideas in the
context of Q-Learning [21], [20], where they work efficiently.

We now present the steps in our new algorithm

A. Steps in the model-building algorithm

Step 1. Initialize the functions J , β and P . Also, initialize
the transition probabilities p̃(i, a, l) = 1/|S| for
every a. Set the number of iterations k to 1.

Step 2. Assume system is in state i. Select action a with
probability P (i, a). Simulate action a. Let the next
state be j. Also, let the immediate reward be r(i, a, j)
and the transition time be t(i, a, j).

Step 3. Update J(i) as shown in Equation (3).
Step 4. Update β(i, a) as shown in Equation (4) using β∗

as the bound.
Step 5. Update r̃(i, a), t̃(i, a) and also the transition proba-

bilities as shown in Equations (5-8). Increment k by
1.

Step 6. If k < kmax, set i ← j and return to Step 2.
Otherwise go to Step 7.

Step 7. Determine the optimal policy from the value
function J and stop.

B. Steps in the model-free algorithm

We also present the steps in the model-free counterpart of
the above algorithm to highlight the differences.

Step 1. Initialize the functions J , β and P . Set the number
of iterations k to 1.

Step 2. Assume system is in state i. Select action a with
probability P (i, a). Simulate action a. Let the next
state be j. Also, let the immediate reward be r(i, a, j)
and the transition time be t(i, a, j).

Step 3. Update J(i) as follows:

J(i) ← J(i) + µ×
[r(i, a, j)− J(i) + exp(−γ̄t(i, a, j))J(j)] .

Step 4. Update β(i, a) as follows:

β(i, a) ← β(i, a) + η×
[r(i, a, j)− J(i) + exp(−γ̄t(i, a, j))J(j)] .

Again, β(i, a) should be bounded as done in the
model-building algorithm above.

Step 5. Increment k by 1. If k < kmax, set i ← j and
return to Step 2. Otherwise go to Step 6.

Step 6. Determine the optimal policy from the value
function J and stop.

A comparison of the steps in the model-building and the
model-free versions shows that the model-building version
requires the additional Step 5 in which the transition probabil-
ities, the transition rewards and transition times are estimated.
Clearly, these increase the computational burden. Also, the
sums over the state space required in Equations (3) and (4)
require a significant amount of computation. However, as
stated above, the model-based updates drive the simulation
noise in the updates of J and β to 0, which provides some
advantages in function approximation. Also, it is not difficult
to store the transition probabilities, rewards and times in neural
networks or some other function approximators.

Finally, as a point of reference for classical model building,
we present the RTDP algorithm for MDPs in [12].

C. Steps in RTDP

Note that the algorithm is presented for discounted reward
MDPs, but can be easily adopted for SMDPs by suitable
change of discount factor.

Step 1. Initialize the functions J to 0. Let Ra(i) = 0,
Na(i) = 0 for all i and Wa(i, j) = 0 for every a
and all (i, j) pairs. Set the number of iterations, k,
to 1.

Step 2. Assume system is in state i. Select action a.
Simulate action a. Let the next state be j. Also, let
the immediate reward be r(i, a, j). Set:

Ra(i) ← Ra(i) + r(i, a, j).

Also, set
Na(i) ← Na(i) + 1

and
Wa(i, j) ← Wa(i, j) + 1.

Step 3. Update r̃(i, a) as follows:

r̃(i, a) =
Ra(i)
Na(i)

.

Update the transition probabilities as follows:

p̃(i, a, l) = Wa(i, j)/Na(i).

for l = 1, 2, . . . , |S|.
Step 4. Update J(i) as follows:

J(i) ← (1− µ)J(i) + µ×
[
r̃(i, a) + λ

∑

l

p̃(i, a, l)J(l)

]
.

Step 5. Increment k by 1. If k < kmax, set i ← j and
return to Step 2. Otherwise go to Step 6.

Step 6. Determine the optimal policy from the value
function J and stop.

RTDP for discounted SMDPs would require in addition the
estimation of the expected time, t̃(i, a), and a suitable mod-
ification of the discount factor as in Equation (3). It should
be clear from a comparison of RTDP and our model-building
version that we do not require the storage of counters, Na(i),
Ra(i) and Wa(i, j). RTDP, of course, was developed for
look-up tables and works well when the state space can
be managed with a look-up table. Our algorithm for model
building is geared toward approximation with some function
approximation scheme such as regression or neural networks.

V. NUMERICAL RESULTS

In this section, we describe in detail the results of our
experiments. Our algorithm had to be modified in order for
it to overcome some numerical difficulties. We first describe
this issue. Thereafter, we present the empirical results.

A. Modified algorithm

We begin with an explanation of why we modified the
algorithm during our numerical experiments. During our ex-
perimentation, we discovered that obtaining the transition
probabilities explicitly, i.e., as shown in Equations (7) and
(8), took a very long time. Since these values are small, they
are also susceptible to floating point errors. In addition, until
these estimates converged to their exact values, the algorithm
strayed from the optimal solution. Hence, we computed them
indirectly as follows using the following term:

Jnext(i, a) =
∑

j∈S
p(i, a, j)J(j),

for all (i, a). The above quantity was estimated, rather than
estimating the transition probabilities, as follows:

Jnext(i, a) ← (1− θ)Jnext(i, a) + θJ(j).

Via the above definition of Jnext(., .), the update in (3) and
(4) can be written as:

J(i) ← J(i) + µ×
[
r̃(i, a)− J(i) + exp(−γ̄t̃(i, a))Jnext(i, a)

]
(10)

and
β(i, a) ← β(i, a) + η×

[
r̃(i, a)− J(i) + exp(−γ̄t̃(i, a))Jnext(i, a)

]
. (11)

There are two merits to using the above: (1) the algorithm
is less susceptible to errors in Jnext(i, a) than to errors in
the transition probability estimates, and (2) unlike Equations
(3) and (4) which have an inner product over the state space,
Equations (10) and (11) do not.

B. Test instances and empirical results

We will use µ to denote a policy for which µ(i) will denote
the (deterministic) action to be chosen in state i; e.g., (2, 1)
will denote a policy with action 2 in state 1 and action 1
in state 2. Let Pµ and Rµ denote the transition probability
and transition reward matrices, respectively, associated with
policy µ. Also, let Tµ denote the transition time matrix for
policy µ. In our experiments, for the sake of simplicity, we
have assumed that each transition takes a fixed amount of
time, which depends on the transition. However, the algorithm
should also work when the distributions of the transition times
are specified.

The first test instance, which we call smdp1, is a 2-state
SMDP with the following parameters: γ̄ = 0.01, and

P(1,1) =
[

0.7 0.3
0.4 0.6

]
;P(2,2) =

[
0.9 0.1
0.2 0.8

]
;

R(1,1) =
[

6.0 −5
7.0 12

]
;R(2,2) =

[
10.0 17
−14 13

]
;

T(1,1) =
[

1.0 5
120 60

]
;T(2,2) =

[
50 75
7 2

]
.

We use 3 other test instances for which the parameters are
identical to those of smdp1 with the following exceptions:
smdp2 — r(1, 1, 2) = 25; smdp3 — p(2, 2, 1) = 0.3 and
p(2, 2, 2) = 0.7; smdp4 — r(1, 1, 2) = −50, p(2, 2, 1) = 0.8
and p(2, 2, 2) = 0.2.

The results of our numerical experiments are provided
in Tables I and II. Table I presents results from the four
test problems using (i) the modified adaptive critic algorithm
described above and (ii) a Q-Learning algorithm for SMDPs
[1]. The latter algorithm is used for comparison of the value
functions. Under the step-size rules shown below, the adaptive
critic did converge to the optimal solution in each case tried.

The solution obtained appears to be sensitive to the step-
sizes chosen. The step-sizes should ideally follow the rules
specified in (9); however, surprisingly, the rules that follow
these conditions did not produce the optimal solutions in our
experiments. After much experimentation, we discovered that
the following rules worked:

µ =
log(k)

k
; η =

1
100 + k

; θ =
50

100 + k
.

Note that θ and η do not satisfy the condition in (9), mathe-
matically required for convergence.

As stated above, using a rule for θ that would satisfy these
conditions led to sub-optimal solutions in our experiments.
One reason for this could be the potential difficulty identified
with using more than two time scales in Borkar [31] (see
pp. 67). In particular, the time scales have to be separated
but at the same time need to be inter-dependent. Clearly,
these rules do not obey these criteria. On the other hand, the
three timescale framework permits us to solve some problems
not easily solvable otherwise; see e.g., [32]. Hence, a deeper
understanding of the theoretical aspects of these issues is
clearly needed.

We used β∗ = 5.00 and ran the adaptive critic for a
maximum of 100,000 iterations. The optimal action in a given
state for the adaptive critic is the action that maximizes the
P -value for that state. As is clear from the results, the adaptive
critic converges to the optimal solution in every case. However,
the actual value function is accurately estimated only for
smdp4, where the P -values do not hit the artificially set
thresholds, i.e., β∗ or −β∗.

Table II presents values of the expected immediate reward
and transition times, as estimated by our algorithm, along with
the actual values (see Equations (1) and (2)). In the case of the
expected immediate rewards and transition times, the values
converge very close to the optimal values, showing that the
model-building component of the algorithm works well.

VI. CONVERGENCE PROPERTIES

We now outline the mechanism to be used for showing
convergence of the original algorithm and its modified version
proposed in the previous section. The multiple time scale result
in [30] will clearly form the backbone of the analysis. Also, the
proof will rest in part on the existing result in [16] for the actor
critic and the convergence of the semi-Markov discounted Q-
Learning algorithm in [1].

TABLE I
THE TABLE SHOWS THE VALUE FUNCTION AND P -VALUES OBTAINED

FROM OUR ALGORITHM AND THE SAME FROM A Q-LEARNING
ALGORITHM [1]. HERE i DENOTES THE STATE, JQ(i) DENOTES THE

VALUE FUNCTION OBTAINED FROM Q-LEARNING FOR STATE i, µ∗(i)
DENOTES THE OPTIMAL ACTION IN STATE i, WHILE P (i, a) AND J(i)

DENOTE OUTPUTS OF THE ADAPTIVE CRITIC FOR STATE i.

Case i JQ(i) µ∗(i) P (i, 1) P (i, 2) J(i)
smdp1 1 95.87 1 5 0.35 119.55
smdp1 2 101.83 2 -0.71 5.00 129.41
smdp2 1 169.27 1 5 -0.98 227.89
smdp2 2 154.59 2 -1.14 5 219.35
smdp3 1 68.66 1 5 0.32 75.88
smdp3 2 69.20 2 -0.19 5 77.97
smdp4 1 25.59 2 -2.15 4.87 25.24
smdp4 2 19.50 1 3.23 -0.77 19.08

TABLE II
THIS TABLE SHOWS SOME OUTPUTS OF THE ALGORITHM AND THEIR

OPTIMAL VALUES

Case (i, a) r̃(i, a) r̄(i, a) t̃(i, a) t̄(i, a)
smdp1 (1,1) 2.65 2.7 2.21 2.2
smdp1 (1,2) 10.78 10.7 52.78 52.5
smdp1 (2,1) 9.82 10 86.11 84
smdp1 (2,2) 7.57 7.6 3.00 3
smdp2 (1,1) 11.77 11.7 2.21 2.2
smdp2 (1,2) 11.43 10.7 55.09 52.5
smdp2 (2,1) 9.82 10 86.22 84
smdp2 (2,2) 7.58 7.6 3.00 3.0
smdp3 (1,1) 2.67 2.7 2.21 2.2
smdp3 (1,2) 10.68 10.7 52.46 52.5
smdp3 (2,1) 10.28 10 80.60 84
smdp3 (2,2) 4.87 4.9 3.51 3.5
smdp4 (1,1) -12.12 -10.8 2.29 2.2
smdp4 (1,2) 10.71 10.7 52.54 52.5
smdp4 (2,1) 10.01 10 83.87 84
smdp4 (2,2) -8.62 -8.6 6.01 6

The convergence arguments will be along the following
lines. For fixed values of r̃, t̃ and p̃ functions, the convergence
of the iterates defined in Equations (3) and (4) follows from the
convergence of one of the algorithms in [16] and the analysis
in [1]. The convergence of the iterates r̃, t̃ and p̃, which
are updated in Equations (5)-(8), can be shown via standard
Robbins-Monro arguments. Then, using the result in [30], all
the iterates will together converge to an optimal solution.

For the convergence of the modified algorithm proposed in
the previous section, some additional work will be needed
because the iterate Jnext(i, a) is not independent of the
iterates on the faster time scales. Showing convergence of
this algorithm and determining learning rates that satisfy the
conditions of multiple time scale convergence is part of future
work that we intend to pursue.

VII. CONCLUSIONS

The adaptive critic is an algorithm that has had an inter-
esting history. The algorithm studied here was introduced in
[14] in 1983, but its convergence properties were not well-
known until the publication of [16]. The work of Werbös [4]
laid the ground work for the function approximation schemes
in adaptive critics and also in general for ADP/RL with the
introduction of the notion of the Bellman error [33]. Some of

the work in [4] also led to a body of literature on adaptive
critics, some of which has been surveyed in [34].

This paper presents some of the preliminary work we have
done in the area of model-building adaptive critics for semi-
Markov control. Semi-Markov control finds applications in nu-
merous areas of operations research, e.g., queueing problems,
maintenance management (see [35],[36] and [17]), and airline
revenue management (see [37] and [38]). We discussed the
model-building framework in ADP/RL, and then presented a
new model-building algorithm for the semi-Markov adaptive
critic. We also presented the model-free adaptive critic for
SMDPs and RTDP as points of reference. We discussed the ad-
vantages and disadvantages of the model-building algorithms.

Some of the future work that we intend to complete is to
implement this algorithm on a large-scale problem using some
function approximation scheme and compare its performance
to its model-free counterpart. We will also plan to study the
convergence properties of the algorithm using the two time
scale framework in [30]. Finally, we intend to analyze a risk-
penalized version of the algorithm which can be potentially
used in safety applications and human performance modeling.
Researchers modeling safety and emergency management are
beginning to explore the application of human performance
models (see Murray et al. [39]). We believe the use of adaptive
critics, as described in this paper, will be a useful addition to
algorithms for emergency response.

ACKNOWLEDGMENT

The first author would like to thank the University of
Missouri Research Board for supporting this research partially.

REFERENCES

[1] A. Gosavi, “Adaptive critics for airline revenue management,” in Con-
ference Proceedings of the Production and Operations Management
Society, Dallas, TX, 2007.

[2] R. E. Bellman, Dynamic Programming. Princeton University Press,
Princeton, NJ, 1957.

[3] R. Howard, Dynamic Programming and Markov Processes. MIT Press,
Cambridge, MA, 1960.

[4] P. J. Werbös, “Building and understanding adaptive systems: A statisti-
cal/numerical approach to factory automation and brain research,” IEEE
Transactions on Systems, Man., and Cybernetics, vol. 17, pp. 7–20,
1987.

[5] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Belmont,
MA: Athena Scientific, 1996.

[6] R. Sutton and A. G. Barto, Reinforcement Learning. Cambridge,
Massachusetts: The MIT Press, 1998.

[7] A. Gosavi, Simulation-Based Optimization:Parametric Optimization
Techniques and Reinforcement Learning. Boston, MA: Kluwer Aca-
demic Publishers, 2003.

[8] J. Si, A. Barto, W. Powell, and D. Wunsch, Learning and Approximate
Dynamic Programming (Edited). New York, NY, USA: John Wiley
and Sons, 2005.

[9] H. Chang, M. Fu, J. Hu, and S. Marcus, Simulation-based algorithms
for Markov decision processes. NY: Springer, 2007.

[10] W. Powell, Approximate Dynamic Programming: Solving the curses of
dimensionality. NJ, USA: Wiley-Interscience, 2007.

[11] C. Szepesvári, Algorithms for Reinforcement Learning: Synthesis Lec-
tures on Artificial Intelligence and Machine Learning. Morgan Claypool
Publishers, 2010.

[12] A. Barto, S. Bradtke, and S. Singh, “Learning to act using real-time
dynamic programming,” Artificial Intelligence, vol. 72, pp. 81–138,
1995.

[13] P. Tadepalli and D. Ok, “Model-based average reward reinforcement
learning algorithms,” Artificial Intelligence, vol. 100, pp. 177–224, 1998.

[14] A. Barto, R. Sutton, and C. Anderson, “Neuronlike elements that
can solve difficult learning control problems,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 13, pp. 835–846, 1983.

[15] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, Kings
College, Cambridge, England, May 1989.

[16] V. Konda and V. S. Borkar, “Actor-critic type learning algorithms for
Markov decision processes,” SIAM Journal on Control and Optimization,
vol. 38(1), pp. 94–123, 1999.

[17] J. Ramirez-Hernández and E. Fernandez, “Control of a re-entrant line
manufacturing model with a reinforcement learning approach,” in Sixth
International Conference on Machine Learning. IEEE, 2007, pp. 330–
335.

[18] S. Bhatnagar and J. R. Panigrahi, “Actor-critic algorithms for hierarchi-
cal markov decision processes,” Automatica, vol. 42, p. 637, 2006.

[19] D. P. Bertsekas, Dynamic Programming and Optimal Control. Belmont,
Massachusetts: Athena Scientific, 1995.

[20] A. Gosavi, “Model building for robust reinforcement learning,” in
Conference Proceedings of ANNIE. ASME Press, 2010.

[21] ——, “Reinforcement learning for model building and variance-
penalized control,” in Proceedings of the Winter Simulation Conference,
Austin, TX. IEEE, 2009.

[22] A. Y. Ng, H. J. Kim, M. I. Jordan, and S. Sastry, “Autonomous helicopter
flight via reinforcement learning,” in Advances in Neural Information
Processing Systems 17. MIT Press, 2004.

[23] P. Abbeel, A. Coates, T. Hunter, and A. Ng, “Autonomous autorotation
of an rc helicopter,,” in International Symposium on Robotics, 2008.

[24] W. Yoshida and S. Ishii, “Model-based reinforcement learning: A
computational model and an fMRI study,” Neurocomputing, vol. 63,
pp. 253–269, 2005.

[25] S. Ishii, W. Yoshida, and J. Yoshimoto, “Control of exploitation-
exploration meta-parameter in reinforcement learning,” Neural Net-
works, vol. 15, pp. 665–687, 2002.

[26] J. Michels, A. Saxena, and A. Ng, “High speed obstacle avoidance using
monocular vision and reinforcement learning,” in Proceedings of the
22nd International Conference on Machine Learning, Bonn, Germany,
2005.

[27] M. A. Wiering, R. P. Salustowicz, and J. Schmidhuber, “Model-based
reinforcement learning for evolving soccer strategies,” in COMPUTA-
TIONAL INTELLIGENCE IN GAMES. Springer Verlag, 2001.

[28] P. Werbös, “A menu of designs for reinforcement learning over time,”
in Neural Networks for Control. MIT Press, MA, 1990, pp. 67–95.

[29] R. Williams, “On the use of backpropagation in associative reinforce-
ment learning,” in Proceedings of the International Conference on
Neural Networks, San Diego, CA, 1988.

[30] V. S. Borkar, “Stochastic approximation with two-time scales,” Systems
and Control Letters, vol. 29, pp. 291–294, 1997.

[31] ——, Stochastic approximation: A dynamical systems viewpoint. New
Delhi, India: Hindusthan Book Agency, 2008.

[32] K. Kulkarni, A. Gosavi, S. Murray, and K. Grantham, “Semi-Markov ad-
pative critic heuristics with application to airline revenue management,”
2010, accepted to the International Journal of Control and Applications.

[33] P. Werbös, “Consistency of HDP applied to a simple reinforcement
learning problem,” Neural Networks, vol. 3, pp. 179–189, 1990.

[34] S. Ferrari and R. Stengel, “Model-based adaptive critic designs,” in
Learning and Approximate Dynamic Programming (edited by J. Si, A.
Barto, W. Powell, and D. Wunsch, Chapter 3). New York, NY, USA:
John Wiley and Sons, 2005.

[35] T. Das, A. Gosavi, S. Mahadevan, and N. Marchalleck, “Solving
semi-Markov decision problems using average reward reinforcement
learning,” Management Science, vol. 45(4), pp. 560–574, 1999.

[36] A. Gosavi, “Reinforcement Learning for long-run average cost,” Euro-
pean Journal of Operational Research, vol. 155, pp. 654–674, 2004.

[37] A. Gosavi, N. Bandla, and T. K. Das, “A reinforcement learning
approach to a single leg airline revenue management problem with
multiple fare classes and overbooking,” IIE Transactions, vol. 34, pp.
729–752, 2002.

[38] A. Gosavi, “A reinforcement learning algorithm based on policy iteration
for average reward: Empirical results with yield management and
convergence analysis,” Machine Learning, vol. 55(1), pp. 5–29, 2004.

[39] S. Murray, K. Ghosh, and M. Gosakan, “Human performance model-
ing for emergency management decision making,” 2010, to appear in
Journal of Emergency Management.

