
Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Moench, O. Rose, eds.

ON STEP SIZES, STOCHASTIC SHORTEST PATHS, AND SURVIVAL PROBABILITIES IN
REINFORCEMENT LEARNING

Abhijit Gosavi

Department of Engineering Management & Systems Engineering
219 Engineering Management Rolla, Mo 65401, U.S.A.

ABSTRACT

Reinforcement Learning (RL) is a simulation-based tech-
nique useful in solving Markov decision processes if their
transition probabilities are not easily obtainable or if
the problems have a very large number of states. We
present an empirical study of (i) the effect of step-sizes
(learning rules) in the convergence of RL algorithms,
(ii) stochastic shortest paths in solving average reward
problems via RL, and (iii) the notion of survival proba-
bilities (downside risk) in RL. We also study the impact
of step sizes when function approximation is combined
with RL. Our experiments yield some interesting insights
that will be useful in practice when RL algorithms are
implemented within simulators.

1 INTRODUCTION

Reinforcement Learning (RL) is a simulation-based tech-
nique that is useful on large-scale and complex Markov
decision processes (MDPs) (Sutton and Barto 1998). In
this paper, we will address (i) the role of step sizes (learn-
ing rules) in discounted-reward problems and (ii) that
of the grounding mechanism of the shortest stochastic
path (SSP) in average-reward problems and (iii) the no-
tion of introducing survival probability (downside risk)
within RL. We will study the impact of these factors
on the values of iterates and examine by how much
values can diverge from the values obtained from dy-
namic programming. In the context of step sizes, we
will perform a study using some standard rules to deter-
mine how they perform. For average reward problems,
the SSP-grounding mechanism allows us to compare the
values of the iterates to those obtained from a compa-
rable value iteration algorithm; here, however, multiple
step-sizes are needed and an empirical study needs to
take that into account. We also develop and test an
RL algorithm that models the survival-probability of a
system. Typically, the survival probability is defined

with respect to a known target revenue. The survival
probability of a system is the probability that the rev-
enue in unit time will exceed the target. It is directly
related to the downside risk in operations research and
the exceedance probability in the insurance industry
(Grossi and Kunreuther 2005). We present a Bellman
equation for survival probabilities, and then numerically
show that the iterates in the associated RL algorithm
converge to an optimal solution. It is our belief that our
results will be of use to a practicing analyst interested in
using RL. The rest of this article is organized as follows.
Section 2 presents a discussion of our experiments with
discounted reward, Section 3 presents our results with
the SSP-grounding mechanism on average-reward prob-
lems, and Section 4 discusses our algorithm with the
survival probability considerations. Section 5 concludes
this paper.

2 DISCOUNTED REWARD

The impact of the rate of convergence of linear and
polynomial step sizes on the values to which Q-values in
RL converge has been studied in Even-Dar and Mansour
(2003). They have established theoretically that linear
rules (e.,g, 1/k, where k denotes the iteration number)
can take an exponential time to converge while poly-
nomial rules (e.g., 1/kψ where ψ is some integer) can
converge in polynomial time. In this paper, our goal
is less ambitious; we wish to conduct experiments with
some simple step sizes to test how they perform empir-
ically and how far they stray from the optimal values in
an empirical setting. It is well-known that, in practice,
one has to fine tune the performance of an RL algorithm
via trials of numerous step sizes, and we believe that it
will be beneficial to a practical user of these algorithms
to know how some of the well-known rules perform under
known conditions. We chose the following rules: 1/k,
a/(b + k) (note that 1/k is a special case of this), and
log(k)/k. A disadvantage of a/(b + k) is that one has



Gosavi

to conduct numerous trials to determine suitable values
of a and b, where as the other rules do not have such
parameters.

We will restrict our attention to the asynchronous
Q-Learning algorithm (Watkins 1989) for which con-
vergence has been established under asynchronous con-
ditions in numerous works (see e.g., Borkar and Meyn
(2000)). In all the literature, the step-sizes are required
to satisfy some basic conditions such as

∑∞
k=1 αk = ∞

and
∑∞

k=1

(
αk

)2
< ∞ where αk denotes the step size

in the kth iteration. For some other less well-known
conditions, see Borkar (1998); all the three rules we
consider satisfy these conditions. Our tests will com-
pare the performance of a Q-Learning algorithm with
that of value iteration (Puterman 1994) which instead
of computing the value function computes Q-values.

We will now present some notation. Let r(i, a, j)
denote the reward earned in going from state i to state
j under action a. Let p(i, a, j) denote the probability
associated with the same transition. We will use µ to
denote a policy for which µ(i) will denote the (deter-
ministic) action to be chosen in state i; e.g., (2, 1) will
denote a policy with action 2 in state 1 and action 1 in
state 2. Let λ denote the discount factor. Also, Pµ and
Rµ will denote the transition probability and transition
reward matrices, respectively, associated with policy µ.
Finally, Q(i, a) will denote the Q-value for state i and
action a.

2.1 Parameters for mdp1

The first test instance, which we call mdp1, is a 2-state
MDP with the following parameters: λ = 0.8, and

P(1,1) =
[

0.7 0.3
0.4 0.6

]
;P(2,2) =

[
0.9 0.1
0.2 0.8

]
;

R(1,1) =
[

6.0 −5
7.0 12

]
;R(2,2) =

[
10.0 17
−14 13

]
.

2.2 Parameters for other test instances

We use 3 other test instances, which are defined as
follows. All the parameters for the remaining test in-
stances are identical to those of mdp1 with the following
exceptions: mdp2 — r(1, 1, 2) = 5 and r(2, 2, 1) = 14;
mdp3 — r(1, 2, 1) = 12; mdp4 — r(1, 1, 1) = 16.

2.3 Numerical results

We now present numerical results obtained in five set-
tings: Q-Learning with the three different step-size
rules, Q-learning with a neuron that uses the log-

rule for the neuron’s learning rule, and value iter-
ation performed with Q-values; see Table 1. The
value of a = 150 and b = 300 in our experi-
ments. Also, ε = 0.01 in the value iteration algo-
rithm (Puterman 1994); the main transformation in
that algorithm is: For all (i, a) do until ε-convergence:
Q(i, a) ← ∑

j p(i, a, j) [r(i, a, j) + λ maxb Q(j, b)]. The
Q-Learning algorithms were run for 10,000 itera-
tions, with a exploration probability set at 0.5
throughout. The computer programs were written
in MATLAB and can be found at <web.mst.edu/∼
gosavia/codes/wsccodes.html>.

Table 1: This table compares the Q-values obtained
via Q-Learning (Q-L) under the various step-size rules,
via a neuron coupled with Q-Learning (N-QL), and
via value iteration using Q-values (Q-VI). Q-L-ab will
denote Q-Learning with rule a/(b+k), Q-L-k will denote
Q-Learning with rule 1/k and Q-Learning with the log
rule will be denoted by Q-L-log.

Method Q(1, 1) Q(1, 2) Q(2, 1) Q(2, 2)
mdp1 Q-VI 44.84 53.02 51.87 49.28
mdp1 Q-L-ab 44.40 52.97 51.84 46.63
mdp1 Q-L-k 11.46 18.74 19.62 16.52
mdp1 Q-L-log 39.24 47.79 45.26 42.24
mdp1 N-QL 43.90 51.90 51.54 49.26
mdp2 Q-VI 51.67 55.76 57.34 61.45
mdp2 Q-L-ab 51.55 55.53 57.11 60.94
mdp2 Q-L-k 17.12 20.38 21.08 23.53
mdp2 Q-L-log 45.61 50.16 50.07 53.78
mdp2 N-QL 50.99 54.70 57.27 62.01
mdp3 Q-VI 50.36 60.83 56.66 53.59
mdp3 Q-L-ab 49.89 60.82 56.66 51.18
mdp3 Q-L-k 12.54 21.72 20.17 16.89
mdp3 Q-L-log 43.96 54.83 49.09 45.60
mdp3 N-QL 49.20 59.43 56.19 53.38
mdp4 Q-VI 48.97 40.91 49.36 47.02
mdp4 Q-L-ab 47.72 40.29 48.93 43.93
mdp4 Q-L-k 16.16 9.16 18.96 16.04
mdp4 Q-L-log 42.73 34.97 42.38 39.72
mdp4 N-QL 48.64 40.72 49.71 47.76

The results show that while all the RL algorithms
converge to the optimal policy, the 1/k-rule produces
values that remain far away from the optimal Q-values
generated by the value iteration algorithm. Perhaps this
behavior can be improved by reducing exploration, but
that will introduce additional parameters for tuning.
What is interesting is that theoretically all the rules are
guaranteed to take us to optimal Q-values. The best
performance was produced by the a/(b+k) rule; it must
be noted, however, that the log-rule which does not have



Gosavi

any tuning parameter performs much better than the
1/k-rule in terms of approximating the value function.
The poor performance of 1/k can be explained by the
fact that it decays very quickly. Also, encouraging is the
performance of a neuron-coupled Q-Learning algorithm
that uses a log-rule for the neuron’s internal learning and
an a/(b+k)-rule for the algorithm. The results indicate
that (i) 1/k (used in Gosavi (2004a)) is perhaps not an
ideal choice for most cases, (ii) the log rule appears to be
promising, and (ii) there is a need to find parameter-less
rules (which do not have parameters such as a and b)
that can be used without elaborate experimentation. It
needs to be pointed out that in large-scale problems, one
does not have the luxury of knowing what the optimal
value function is and it is very critical that one has
a step-size rule that takes one close to optimality. In
large-scale problems, it is quite possible that the rule
which causes significant deviation from the optimal value
function actually leads one to a sub-optimal policy.

3 AVERAGE REWARD

We now turn our attention to average-reward MDPs. We
will performcomputational studieswith aQ-Learning al-
gorithm that uses two time scales for updating and hence
needs two different step sizes simultaneously (Gosavi
2004b). Other algorithms with proven convergence
properties include a version of Q-Learning based on rel-
ative value iteration (see e.g., Borkar and Meyn (2000)).
Here, we wish to study the impact of the stochastic short-
est path on average reward problems in RL (Bertsekas
1995).

We will compute the optimal value function us-
ing a value iteration algorithm for average reward.
Let ρµ denote the average reward of the policy µ,
and ρ∗ denote the optimal average reward. Then if
ρ∗ is known, one can develop a value iteration al-
gorithm for average reward problems. It must be
noted that such a value iteration algorithm is being
studied here only for the sake of testing how far the
Q-Learning algorithm strays from the optimal values
(clearly, in practice ρ∗ is unknown, and one must use
other algorithms; see e.g., Puterman (1994)). The
value iteration algorithm will have the following main
transformation: For all (i, a) do until ε-convergence:
Q(i, a) ← ∑

j p(i, a, j) [r(i, a, j)− ρ∗ + maxb Q(j, b)].
The Q-learning algorithm with its SSP-grounding mech-
anism is described in the Appendix. It has two step sizes:
α(k) for the Q-value and β(k) for the value of ρ, where
limk→∞ β(k)/α(k) = 0. We use the test instances used
in the last section with the understanding that there is
now no discount factor. The results are tabulated in
Table 2. We ran the Q-learning algorithm for 10,000
iterations and used ε = 0.01; also mdp1 — ρ∗ = 10.56,

mpd2 — ρ∗ = 11.53, mdp3 — ρ∗ = 12.00 and mdp4
— ρ∗ = 9.83. These values for ρ∗ were determined by
an exhaustive evaluation of the average reward of each
deterministic policy. The exploration probability was
fixed at 0.5 for both actions. The results show that the
value function, which is defined as v(i) = maxa Q(i, a), is
reasonably approximated by the Q-Learning algorithm,
although some Q-values are not so well approximated.

3.1 Is Bellman optimality worth achieving?

The numerical results of this section and the previous
section raise an important question. Is Bellman opti-
mality, which means achieving the value function that
would result from solving the Bellman equation, really
worth achieving, or would it be okay for an algorithm to
generate the optimal solution? Note that in Section 2.3,
the 1/k-rule and the log-rule generate optimal policies,
although the value function they generate strays consid-
erably from that generated by dynamic programming
(Bellman equation). The same is true of the results for
average reward. This is an issue that requires further
analysis. An important question that needs to be ad-
dressed is: how much deviation in the value function
can be tolerated? In other words, by how much can the
value function deviate without resulting in a sub-optimal
policy? The answer to this question might pave the way
to solving the MDP without strict adherence to Bellman
principles. Gosavi (2004a) has shown that that for any
given state, if the absolute value of the error in the value
function is less than half of the absolute value of the
difference between the Q-value of the optimal function
and the Q-value of the sub-optimal action (assuming
we have 2 actions in each state), then that error can
be tolerated. But an in-depth study of this issue may
prove to be of importance in the future — especially in
the context of function approximation, where we have
clear deviation from Bellman optimality.

4 SURVIVAL PROBABILITY

The notion of risk has been studied in the context of RL
via utility functions (Borkar 2002), variance penalties
(Sato and Kobayashi 2001), and probability of entering
forbidden states (Geibel and Wysotzki 2005). See Heger
(1994) for an earlier work. Variance penalties in the
context of MDPs were studied in Filar, Kallenberg, and
Lee (1989). In this paper, we consider the penalties
associated with downside risk which is defined with
respect to a target. Given a target for the one-step
reward, we define the downside risk (DR) to be the
probability of the reward falling below the target; this
risk should be minimized. Hence 1 − DR will denote
the probability of survival, which is maximized. If one



Gosavi

Table 2: This table compares the Q-values obtained via
Q-Learning (Q-L) for average reward (see Appendix)
and via value iteration using Q-values (Q-VI). For mdp2
α(k) = 500/(1000+k) and β(k) = 150/(300+k), while
for the remaining instances we used α(k) = 150/(300+k)
and β(k) = 50/(49 + k).

Method Q(1, 1) Q(1, 2) Q(2, 1) Q(2, 2)
mdp1 Q-L -3.46 0.1710 -1.89 -3.02
mdp1 Q-VI -7.99 0.2789 -1.12 -3.80
mdp2 Q-L -2.85 0.57 4.48 6.10
mdp2 Q-VI -1.85 0.37 7.18 7.31
mdp3 Q-L -4.99 0.1061 -4.81 -5.19
mdp3 Q-VI -9.80 0.99 -3.996 -7.39
mdp4 Q-L -1.14 -8.19 -0.298 -3.94
mdp4 Q-VI -0.1904 -8.28 0.24 -2.08

considers costs instead of rewards, the probability of
exceeding the target will be the associated downside
risk; this is also called the exceedance probability in
catastrophe modeling (Grossi and Kunreuther 2005).
We next present intuitively-conjectured Bellman and
Poisson equations, and then an RL algorithm.

4.1 Bellman Equation

Let τ denote the target one-step reward. Then for a
given deterministic, stationary policy µ, the downside
risk is defined as:

DRµ =
∑

i∈S
Πµ(i)

∑

j∈S
p(i, µ(i), j)I(r(i, µ(i), j) < τ)

(1)
where I(.) denotes the indicator function (which equals
1 if the condition inside the brackets is true and 0
otherwise) and Πµ(i) denotes the limiting probability
(invariant probability) for state i under policy µ. Our
objective function in the downside-risk-penalized prob-
lem will be: φ = ρ− θDR where ρ denotes the average
reward and θ is a positive scalar chosen by the risk
manager. The greater the value of θ, the higher the
risk-sensitivity. Such parameters were popularized by
the pioneering work by Markowitz (1952) in finance,
and have been used in MDPs by Filar, Kallenberg, and
Lee (1989) and Gosavi (2006) and in RL by Sato and
Kobayashi (2001). We now propose Bellman and Pois-
son equations for this objective function without proof.
A theoretical analysis will be the subject of future work.

(i) (Poisson equation) If a scalar φ ∈ < and an |S|-
dimensional finite vector ~h satisfy for all i ∈ S:

φ + h(i) =

∑

j∈S
p(i, µ(i), j) [r(i, µ(i), j)− θI(r(i, µ(i)j) < τ) + h(j)] ,

then φ is the variance-penalized score associated with
the policy µ.
(ii) (Bellman equation) Assume that a scalar φ∗ and an
|S|-dimensional finite vector J(i) satisfy for all i ∈ S

φ∗ + J(i) =

max
a∈A(i)


∑

j∈S
p(i, a, j)[r(i, a, j)− θI(r(i, a, j) < τ) + J(j)]


 .

(2)
Any policy that attains the max in the RHS of the
above will be an optimal policy, i.e., it will generate
the maximum value for the risk-penalized score. Analo-
gous equations for variance penalties and semi-variance
penalties can be constructed. Variance in the MDP for
a policy µ is defined as:

∑

i∈S
Πµ(i)

∑

j∈S
p(i, µ(i), j)(r(i, µ(i), j)− ρµ)2

and semi-variance as:
∑

i∈S
Πµ(i)

∑

j∈S
p(i, µ(i), j)(τ − r(i, µ(i), j))2+

where a+ = max(0, a). For semi-variance, the indicator
function would be replaced by (τ − r(i, µ(i), j))2+ in the
Poisson equation and by (τ −r(i, a, j))2+ in the Bellman
equation (Gosavi 2008), and for variance, we would
replace the indicator function in the Bellman equation
by (r(i, a, j)−ρ∗)2, where ρ∗ is the average reward of the
optimal policy of the variance-penalized MDP (Gosavi
and Meyn 2008). While variance and semi-variance are
acceptable measures of risk, downside risk is even more
appealing because it is a probability measure. We now
present an RL algorithm for downside-risk penalties.

4.2 Q-Learning for survival

A Q-value version of the Bellman equation can be de-
veloped from Equation (2) above. From that, it is
not difficult to derive a Q-Learning algorithm. Since
the Bellman equation models the optimal value of the
objective function, φ∗, (this is analogous to ρ∗ in the



Gosavi

risk-neutral Bellman equation for average reward), we
need to use an algorithm that uses relative values. Our
algorithm’s main features are as follows. In the first
step, choose some state-action pair to be a distinguished
state-action pair; call it (i∗, a∗). The main update in
the simulator is:

Qk+1(i, a) ← (1− α(k))Qk(i, a) + α(k)×

[
r(i, a, j)− θI(r(i, a, j) < τ)−Qk(i∗, a∗) + max

b∈A(j)
Qk(j, b)

]
,

where Qk(., .) is the Q-value in the kth iteration. For the
risk-neutral case, it can be shown that with probability 1,
limk→∞Qk(i∗, a∗) = ρ∗ (see Borkar and Meyn (2000));
intuition suggests that with probability 1:

lim
k→∞

Qk(i∗, a∗) = φ∗. (3)

Of course, as stated earlier, a theoretical proof is a
subject of future work. We will now conduct simulation
tests to determine how the algorithm performs.

4.3 Parameters for test instances

We use four test instances named mdp5 through mdp8.
For all the test instances, τ = 8 and θ = 2. We describe
them next.
mdp5 : Identical to mdp1 except for: r(1, 1, 1) =
3; r(1, 1, 2) = 11; r(1, 2, 1) = 6; r(2, 2, 2) = 7.
mdp6 : Identical to mdp1 except for: r(1, 1, 1) =
3; r(1, 1, 2) = 11; r(2, 1, 2) = 9; r(1, 2, 1) = 6; r(2, 2, 2) =
7.
mdp7 : Identical to mdp1 in terms of the transition
probabilities, but with the following reward structures:

R(1,1) =
[

9.0 −1
12.0 8

]
;R(2,2) =

[
6.0 20
−14 7

]
.

mdp8 : Identical to mdp1 in terms of the transition
probabilities, but with the following reward structures:

R(1,1) =
[

3.0 7
9.0 1

]
;R(2,2) =

[
6.0 9
14 7

]
.

4.4 Simulation experiments

We first analyzed via exhaustive evaluation the aver-
age reward and the downside risk for each policy in
the 4 test instances. The average reward is ρµ =∑

i∈S Πµ(i)
∑

j∈S p(i, µ(i), j)r(i, µ(i), j). The downside
risk is defined in Equation (1). The limiting probabilities
of each state can be determined by solving the classi-

cal invariant equations:
∑

j∈S Πµ(j)p(j, µ(i), i) = Πµ(i)
for all i ∈ S and

∑
i∈S Πµ(i) = 1. The results are pre-

sented in Table 3. On all the examples, the algorithm
converged to optimal solutions in 10,000 iterations. We
fix the exploration probability at a value of 0.5 for each
action. We also show in the table the value to which
Q(i∗, a∗) converges. We do not present all the Q(, ., )
values because we have not compared them to values
from dynamic programming, and hence the values by
themselves convey nothing. What is more interesting is
the value to which Q(i∗, a∗) converges. As is expected
from Equation (3), it converges to a value very close
to φ∗. Also, note that for mdp5, mdp6, and mdp7,
the risk-neutral optimal policy (that maximizes ρ) does
not coincide with the risk-sensitive optimal policy (that
maximizes our risk-penalized score, φ).

4.5 Semi-Markov control

A natural and important extension of MDP theory is
to Semi-Markov decision processes (SMDPs) (Puterman
1994), where the time spent in each transition is modeled
as a random variable. Let t(i, a, j) denote the time
spent in going from i to j under action a. We first need
the definitions of the risk measures considered above.
Downside risk will be defined as:

DRµ =
∑

i∈S
Πµ(i)

∑

j∈S
p(i, µ(i), j)I(

r(i, µ(i), j)
t(i, µ(i), j)

< τ).

The corresponding Bellman equation would be: J(i) =

max
a∈A(i)

[ ∑

j∈S
p(i, a, j){r(i, a, j)−θI(r(i, a, j) < τt(i, a, j))

− φ∗t(i, a, j) + J(j)}
]

and the Q-learning algorithm can be derived to be:

Qk+1(i, a) ← (1− α(k))Qk(i, a) + α(k)×

[
r(i, a, j)− θI(

r(i, a, j)
t(i, a, j)

< τ)−Qk(i∗, a∗)t(i, a, j)
]

+ α(k)
[

max
b∈A(j)

Qk(j, b)
]

,

Semi-variance in the SMDP can be defined as:
∑

i∈S
Πµ(i)

∑

j∈S
p(i, µ(i), j)(τt(i, µ(i), j)− r(i, µ(i), j))2+.



Gosavi

The SMDP Bellman equation for semi-variance can be
obtained from that of downside risk via replacement of
the indicator function by (τt(i, a, j)− r(i, a, j))2+. A Q-
learning algorithm can also be derived for semi-variance.

For variance, we need to define some quantities first.
We will use the renewal reward theorem (RRT) (Ross
1997) because underlying the SMDP, one has a renewal
process. Consider a counting process {N(t), t ≥ 0}, and
letTn denote the time between the (n−1)th event and the
nth event in the process; n ≥ 1. If {T1, T2, . . .} denotes
a sequence of non-negative i.i.d random variables, then
{N(t), t ≥ 0} is a renewal process. Let Rn denote
the reward accrued in the nth renewal in the renewal
process underlying the SMDP. Also, let E[Rn] ≡ E[R]
and E[Tn] ≡ E[T ]. The average reward for the SMDP
can be shown via the RRT to be : ρ = E[R]/E[T ] where
(the action a in each state i is defined by the policy
under consideration)

E[R] =
∑

i∈S
Π(i)

∑

j∈S
p(i, a, j)r(i, a, j) and

E[T ] =
∑

i∈S
Π(i)

∑

j∈S
p(i, a, j)t(i, a, j).

The natural definition for the asymptotic variance is
defined in (4) below. From the RRT, we know that
with probability 1 (w.p.1), limt→∞

N(t)
t = 1

E[T ] using
which we can work out the following:

σ2 ≡ lim
t→∞

∑N(t)
n=1 [Rn − ρTn]2

t
(4)

= lim
t→∞

N(t)∑
n=1

[
R2

n − 2ρTnRn + ρ2T 2
n

N(t)

]
N(t)

t

=
E[R2]
E[T ]

− 2ρ
E[T ·R]

E[T ]
+ ρ2 E[T 2]

E[T ]
(w.p.1)

=
E[R2]
E[T ]

− 2ρ
E[T ]E[R]

E[T ]
+ ρ2 E[T 2]

E[T ]
(since T and R independent)

=
E[R2]
E[T ]

− 2ρ2E[T ] + ρ2 E[T 2]
E[T ]

,

where

E[R2] =
∑

i∈S
Π(i)

∑

j∈S
p(i, a, j)r2(i, a, j) and

E[T 2] =
∑

i∈S
Π(i)

∑

j∈S
p(i, a, j)t2(i, a, j).

Using E[R], E[R2], E[T ], and E[T 2] one can define the
variance of the SMDP. Then if ρ∗ denotes the aver-
age reward of the policy that optimizes a variance-
penalized SMDP, then the Bellman equation for the
variance-penalized SMDP can be obtained by replacing
the indicator function in the corresponding equation for
downside risk by (r(i, a, j)− ρ∗t(i, a, j))2.

5 Conclusions

This paper presented an empirical study of (i) the use
of different step-sizes in discounted RL, (ii) the use of
shortest stochastic paths in average reward RL, and
(iii) the notion of survival probability or downside risk
in RL. The empirical study with the step size (Section
2) indicates that the 1/k-rule does not appear to be a
reliable or robust choice even on very small problems,
and that the (a/b + k)-rule performs very well on small
problems, but the values of a and b need to be deter-
mined. The log-rule performs reasonably well, and its
advantage is that it does not have any tuning param-
eters. The empirical study with the stochastic paths
(Section 3) indicates that using SSP grounding, one
obtains reasonable approximations of the actual value
function. Our empirical results do point to the need
for studying how much deviation can be tolerated from
Bellman optimality. Finally, in Section 4, we present a
new Q-Learning algorithm that allows the optimization
of a survival-probability-penalized objective function.
Numerical results on small test problems indicate that
the algorithm performs well. A theoretical study of this
algorithm is a topic for future research.

A APPENDIX

We present some details of the Q-Learning algorithm
used for average reward (Gosavi 2004b).
Step 1. Set all Q(l, u) ← 0. Set k, the number of
state changes, to 0. Set ρk, the estimate of the average
reward per transition in the kth transition, to 0. Also set
W to 0. Run the algorithm for kmax iterations, where
kmax is sufficiently large. Start system simulation at
any arbitrary state. Select some state to be a special
state s∗.
Step 2. Let the current state be i. Select action a with
a probability of 1/|A(i)| where A(i) denotes the set of
actions allowed in state i. A greedy action in state i is
the action associated with the highest Q-value for i.
Step 3. Simulate action a. Let the next state be j.
Let r(i, a, j) be the immediate reward earned in going
to j from i under a. Then update Q(i, a) as follows:

Q(i, a) ← (1−α(k))Q(i, a)+α(k)
[
r(i, a, j)− ρk + M j

b

]
,



Gosavi

Table 3: This table lists the ρ, DR and φ values of all
the policies along with the value of Q∞(i∗, a∗); we used
i∗ = 1 and a∗ = 1. The values in bold are those for the
optimal policy.

µ ρµ DRµ φµ Q(i∗, a∗)
mdp5 (1,1) 7.3714 0.5714 6.2286 6.3340

(1,2) 3.84 0.8800 2.0800 -
(2,1) 7.68 0.8 6.08 -
(2,2) 5.6667 0.9333 3.8 -

mdp6 (1,1) 7.7143 0.4 6.9143 6.9545
(1,2) 3.84 0.88 2.08 -
(2,1) 7.84 0.72 6.4 -
(2,2) 5.6667 0.9333 3.8 -

mdp7 (1,1) 7.5429 0.1714 7.2 7.2097
(1,2) 4.08 0.72 2.64 -
(2,1) 7.84 0.72 6.4 -
(2,2) 5.866 0.9333 4.000 -

mdp8 (1,1) 4.2 0.8286 2.5429 -
(1,2) 6.72 0.88 4.96 -
(2,1) 5.88 0.84 4.2 -
(2,2) 7 0.8667 5.266 5.3043

where M j
b = 0 if j = s∗ (this is called SSP grounding)

and M j
b = maxb∈A(j) Q(j, b) otherwise.

Step 4. If a greedy action was selected in Step 2, then
increment W as follows: W ← W + r(i, a, j) and then
update ρk as follows:

ρk+1 = (1− β(k))ρk + β(k)
W

k

Step 5. If k < kmax, set i ← j, k ← k + 1, and then
go to Step 2. Otherwise, go to Step 6.
Step 6. For each state i, select µ(i) ∈
argmaxa∈A(i)Q(i, a). The policy (solution) generated
by the algorithm is µ. Stop.

REFERENCES

Bertsekas, D. 1995. Dynamic programming and optimal
control. Belmont: Athena.

Borkar, V. 2002. Q-learning for risk-sensitive control.
Mathematics of Operations Research 27(2):294–311.

Borkar, V. S. 1998. Asynchronous stochastic approxima-
tion. SIAM Journal of Control and Optimization 36
No 3:840–851.

Borkar, V. S., and S. Meyn. 2000. The ODE method
for convergence of stochastic approximation and
reinforcement learning. SIAM Journal of Control
and Optimization 38 (2):447–469.

Even-Dar, E., and Y. Mansour. 2003. Learning rates
for Q-learning. Journal of Machine Learning Re-
search 5:1–25.

Filar, J., L. Kallenberg, and H. Lee. 1989. Variance-
penalized Markov decision processes. Mathematics
of Operations Research 14(1):147–161.

Geibel, P., and F. Wysotzki. 2005. Risk-sensitive
reinforcement learning applied to control under
constraints. Journal of Artificial Intelligence Re-
search 24:81–108.

Gosavi, A. 2004a. A reinforcement learning algorithm
based on policy iteration for average reward: Empir-
ical results with yield management and convergence
analysis. Machine Learning 55(1):5–29.

Gosavi, A. 2004b. Reinforcement learning for long-run
average cost. European Journal of Operational Re-
search 155:654–674.

Gosavi, A. 2006. A risk-sensitive approach to total pro-
ductive maintenance. Automatica 42:1321–1330.

Gosavi, A. 2008. Markov decision processes subject to
semi-variance risk. Working paper at University at
Buffalo, SUNY, ISE Department.

Gosavi, A., and S. Meyn. 2008. The variance-penalized
Bellman equation. Working paper at SUNY Buffalo
and University of Illinois at Urbana-Champaign.

Grossi, P., and H. Kunreuther. 2005. Catastrophe mod-
eling: A new appraoch to managing risk. Springer.

Heger, M. 1994. Consideration of risk in reinforcement
learning. Proceedings of the 11th International Con-
ference on Machine Learning :105–111.

Markowitz, H. 1952. Portfolio selection. Journal of Fi-
nance 7(1):77–91.

Puterman, M. L. 1994. Markov decision processes. New
York: Wiley Interscience.

Ross, S. M. 1997. Introduction to Probability Models.
Academic Press, San Diego, CA, USA.

Sato, M., and S. Kobayashi. 2001. Average-reward re-
inforcement learning for variance-penalized Markov
decision problems. In Proceedings of the 18th Inter-
national Conference on Machine Learning, 473–480.
Morgan Kauffman.

Sutton, R., and A. G. Barto. 1998. Reinforcement learn-
ing: An introduction. Cambridge, MA, USA: The
MIT Press.

Watkins, C. 1989, May. Learning from delayed rewards.
Ph. D. thesis, Kings College, Cambridge, England.

AUTHOR BIOGRAPHIES

Abhijit Gosavi is an Assistant Professor in the
Department of Engineering Management at the
Missouri University of Science and Technology. His
research interests lie in simulation-based optimization,
supply chain management, and lean manufacturing.



Gosavi

He is a member of IEEE, ASEE, POMS, IIE and
INFORMS. His email address for these proceedings is
<gosavia@mst.edu>.


