Chapter 5
Cylindrical Cavities and Waveguides

We shall consider an electromagnetic field propagating inside a hollow (in the present case cylindrical) conductor. There are no sources inside the conductor, but we shall assume the material is isotropic with electric permittivity ε, and magnetic permeability, μ. The speed of the propagating wave is $1/\sqrt{\varepsilon\mu}$. The direction of propagation will be along the cylindrical axis which is the \hat{z} direction. We shall assume that $E(r, t) = E(r)e^{-i\omega t}$ and $B(r, t) = B(r)e^{-i\omega t}$. Maxwell’s equations give:

$$[\nabla^2 - \varepsilon\mu \frac{\partial^2}{\partial t^2}]E(r, t) = 0$$

$$[\nabla^2 - \varepsilon\mu \frac{\partial^2}{\partial t^2}]B(r, t) = 0$$

$$[\nabla^2 + \varepsilon\mu \omega^2]B(r) = 0$$

$$[\nabla^2 + \varepsilon\mu \omega^2]E(r) = 0$$

5.1
5.2
5.3
5.4

Since the wave is propagating along the \hat{z} direction we shall further assume that:

$$\nabla \times E = i\omega B(r);$$

$$\nabla \times B = -i\omega \varepsilon\mu E(r).$$

5.5
5.6

Since the wave is propagating along the \hat{z} direction we shall further assume that:

$$E(r) = E(x, y)e^{\pm jkz}$$

$$B(r) = B(x, y)e^{\pm jkz}$$

5.7a
5.7b

Thus Eq. (5.3 and 5.4) become

$$[\nabla^2 + \varepsilon\mu \omega^2 - k^2]E(x, y) = 0$$

$$[\nabla^2 + \varepsilon\mu \omega^2 - k^2]B(x, y) = 0$$

5.8a
5.8b

where
Finally, one can solve for

\[\nabla^2_i = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \]

\[\nabla_i = \hat{x}\nabla_x + \hat{y}\nabla_y \]

The expressions in Eqs. 5.5 and 5.6 then become:

\[\nabla \times \mathbf{E} = [\hat{z}\nabla_z + \nabla_i] \times [\hat{z}\mathbf{E}_z + \mathbf{E}_t] = i\omega \mathbf{B}(r) \] where
\[\mathbf{E}_t = \mathbf{E} - \hat{z}\mathbf{E}_z = (\hat{z} \times \mathbf{E}) \times \hat{z} \]
\[\mathbf{B}_t = \mathbf{B} - \hat{z}\mathbf{B}_z = (\hat{z} \times \mathbf{B}) \times \hat{z} \]

Then

\[\nabla \times \mathbf{E} = \hat{z}\nabla_z \mathbf{E}_t - \hat{z} \times \nabla_i \mathbf{E}_z + \nabla_i \times \mathbf{E}_t = i\omega (\mathbf{B}_t + \hat{z}\mathbf{B}_z) \]
\[\nabla \times \mathbf{B} = \hat{z}\nabla_z \mathbf{B}_t - \hat{z} \times \nabla_i \mathbf{B}_z + \nabla_i \times \mathbf{B}_t = -i\omega \epsilon \mu (\mathbf{E}_t + \hat{z}\mathbf{E}_z) \]

Thus,

\[\hat{z} \times \nabla_z \mathbf{E}_t - \hat{z} \times \nabla_i \mathbf{E}_z = -i\omega \hat{z} \times (\hat{z} \times \mathbf{B}) \]
\[\nabla_z \mathbf{E}_t + i\omega (\hat{z} \times \mathbf{B}_t) = \nabla_i \mathbf{E}_z \quad \text{(5.9)} \]
\[\hat{z} \cdot (\nabla_i \times \mathbf{E}_t) = i\omega \mathbf{B}_z \quad \text{(5.10)} \]
\[\nabla_z \mathbf{B}_t - i\omega \epsilon \mu (\hat{z} \times \mathbf{E}_t) = \nabla_i \mathbf{B}_z \quad \text{(5.11)} \]
\[\hat{z} \cdot (\nabla_i \times \mathbf{B}_t) = -i\omega \epsilon \mu \mathbf{E}_z \quad \text{(5.12)} \]

Also,

\[\nabla_i \mathbf{E}_t + \nabla_z \mathbf{E}_z = 0 \quad \text{(5.13a)} \]
\[\nabla_i \mathbf{B}_t + \nabla_z \mathbf{B}_z = 0 \quad \text{(5.13b)} \]

Finally, one can solve for \(\mathbf{E}_t \) and \(\mathbf{B}_t \) if \(\mathbf{E}_z \) and \(\mathbf{B}_z \) are known (and not both are zero).

\[i\kappa \mathbf{E}_t = \nabla_i \mathbf{E}_z - i\omega (\hat{z} \times \mathbf{B}_t) \]
\[i\kappa \mathbf{B}_t = \nabla_i \mathbf{B}_z + i\omega \epsilon \mu (\hat{z} \times \mathbf{E}_t) \]
\[i\kappa (\hat{z} \times \mathbf{B}_t) = (\hat{z} \times \nabla_i \mathbf{B}_z) + i\omega \epsilon \mu (\hat{z} \times (\hat{z} \times \mathbf{E}_t)) \]

and

\[i\kappa \mathbf{E}_t = \nabla_i \mathbf{E}_z - (i\omega \kappa) (\hat{z} \times \nabla_i \mathbf{B}_z) + (\omega^2 \epsilon \mu/k^2)(-\mathbf{E}_t) \]
\[(\omega^2 \epsilon \mu - k^2) \mathbf{E}_t = i\kappa \nabla_i \mathbf{E}_z - i\omega (\hat{z} \times \nabla_i \mathbf{B}_z) \]
\[\mathbf{E}_t = i(\omega^2 \epsilon \mu - k^2)^{-1}[k
abla_i \mathbf{E}_z - \omega (\hat{z} \times \nabla_i \mathbf{B}_z)] \] likewise
\[(\omega^2 \epsilon \mu - k^2) \mathbf{B}_t = i(\omega^2 \epsilon \mu - k^2)^{-1}[k
abla_i \mathbf{B}_z + \omega \epsilon \mu (\hat{z} \times \nabla_i \mathbf{E}_z)] \]

For waves in the opposite direction change \(k \) to \(-k \).
Transverse electromagnetic wave (TEM): E_z and B_z are zero everywhere inside cylinder.

For TEM waves $E_{TEM} = E_t$:

\[
\begin{align*}
\mathbf{\nabla} \times E_{TEM} &= 0 \quad 5.15a \\
\mathbf{\nabla} \cdot E_{TEM} &= 0 \quad 5.15b \\
k = k_0 = \omega \sqrt{\varepsilon \mu} \quad 5.15c \\
B_{TEM} &= \pm \omega \sqrt{\varepsilon \mu} (\hat{z} \times E_{TEM}) \quad 5.15d
\end{align*}
\]

Unfortunately, the TEM wave is not supported by a single hollow cylindrical conductor (with infinite conductivity). The surface must be an equipotential surface and inside such a conductor, the electric field vanishes. One needs two or more cylindrical surfaces (such as a coaxial cable) to support a TEM wave.

Boundary conditions at the surface

The existence of surface charge densities, σ, and surface current densities, K, at the interface provide the following boundary conditions:

\[
\begin{align*}
\hat{n} \cdot (D - D_c)|_S &= \sigma \\
\hat{n} \cdot (B - B_c)|_S &= 0 \\
\hat{n} \times (E - E_c)|_S &= 0 \\
\hat{n} \times (H - H_c)|_S &= K
\end{align*}
\]

In the conductor the electric field, E_c, (and for time varying electric fields B_c) is zero. Thus, inside the hollow cylinder the boundary conditions can only be satisfied at the interface when

\[
\begin{align*}
(\hat{n} \times E)|_S &= 0 \quad 516a \\
\hat{n} \cdot B|_S &= 0. \quad 5.16b
\end{align*}
\]

That is, the component of the electric field tangent to the interface (E_z) must equal zero at the surface:

\[
E_z|_S = 0 \quad 5.17
\]

The corresponding condition on B_z is (see Eq. (5.11)):

\[
\hat{n} \cdot \nabla B_z|_S = \nabla \cdot B_z|_S = 0
\]

Since we can not have both E_z and B_z equal to zero everywhere inside the cylinder, there are two simple cases which satisfy the boundary conditions:
Transverse Magnetic (TM) wave: \(B_z = 0 \) everywhere and \(E_z|_S = 0 \)

\[E_t = i(\omega^2 \varepsilon \mu - k^2)^{-1}k \nabla_t E_z \]
\[B_t = i(\omega^2 \varepsilon \mu - k^2)^{-1}\omega \varepsilon \mu (\hat{z} \times \nabla_t E_z) \]
\[0 = [\nabla_t^2 + \varepsilon \mu \omega^2 - k^2]E_z(x, y) \]

Transverse Electric (TE) wave: \(E_z = 0 \) everywhere and \(\frac{\partial B_z}{\partial n}|_S = 0 \)

\[B_t = i(\omega^2 \varepsilon \mu - k^2)^{-1}k \nabla_t B_z \]
\[E_t = i(\omega^2 \varepsilon \mu - k^2)^{-1}[-\omega (\hat{z} \times \nabla_t B_z)] \]
\[0 = [\nabla_t^2 + \varepsilon \mu \omega^2 - k^2]B_z(x, y) \]

The differential equations (5.18d) for \(E_z \) and (5.19d) for \(B_z \) and the boundary conditions (5.18) and (5.19) give rise to eigenvalues of \(k \) (dependent on \(\omega \)) for which the propagation is allowed. Since the boundary conditions for \(E_z \) and \(B_z \) are different, the eigenvalues are also different. The allowed TE and TM waves (and the TEM wave, if it exists) provide a complete set of waves from which one can construct an arbitrary electromagnetic disturbance in the waveguide or cavity.

Modes in a rectangular waveguide:

We shall determine the TE modes in a rectangular waveguide with dimensions \(a \) in \(x \) and \(b \) in \(y \) (with \(a > b \)) as shown in Fig. 8.5.

Note that this means \(E_z = 0 \) everywhere (\(E \) is transverse). \(E_t \) will be found from \(B_z \). So, first one must solve Eq. 5.8 for \(B_z \):
\[
\left[\nabla_t^2 + \varepsilon \mu \omega^2 - k^2 \right]B_z(x, y) = 0
\]
\[
\left[-\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \mathbf{k}' \cdot \mathbf{k}' \right]B_z(x, y) = 0
\]

The general solution is:

\[B_z(x, y) = C_1 e^{+i\mathbf{k}' \cdot \mathbf{r}} + C_2 e^{-i\mathbf{k}' \cdot \mathbf{r}}, \text{ where} \]
\[\mathbf{r} = x\hat{x} + y\hat{y} \]
The form for $B_z(x,y)$ which is non-zero when $x = y = 0$ is:

$$B_z(x,y) = B_o \cos(k'_x x) \cos(k'_y y)$$

5.20

The boundary conditions are

$$\frac{\partial}{\partial n} B_z|_S = 0$$

$$\frac{\partial}{\partial x} B_o \cos(k'_x x) \cos(k'_y y)|_{x=a} = 0$$

$$\frac{\partial}{\partial y} B_o \cos(k'_x x) \cos(k'_y y)|_{y=b} = 0$$

These give:

$$\sin(k'_x a) = \sin(k'_x 0) = 0 \text{ or } k'_x = m\pi/a; \ m = 0, 1, 2, \ldots$$

$$\sin(k'_y b) = \sin(k'_y 0) = 0 \text{ or } k'_y = n\pi/b; \ n = 0, 1, 2, \ldots$$

$$B_z(x,y) = B_o \cos(m\pi x/a) \cos(n\pi y/b)$$

5.22a

$$(\frac{m\pi}{a})^2 + (\frac{n\pi}{b})^2 = \epsilon \mu \omega^2 - k^2; \quad m, n = 0, 1, 2, 3, \ldots$$

$$k^2 = \epsilon \mu \omega^2 - \left[(\frac{m\pi}{a})^2 + (\frac{n\pi}{b})^2 \right] > 0$$

5.22d

$$\omega > \frac{1}{\sqrt{\epsilon \mu}} \left[(\frac{m\pi}{a})^2 + (\frac{n\pi}{b})^2 \right]^{1/2}$$

5.22e

$$\omega_{\min} = \frac{\pi}{a \sqrt{\epsilon \mu}}; \quad m = 1, n = 0$$

5.22f

$$\omega_{mn} = \frac{\pi}{\sqrt{\epsilon \mu}} \left[(\frac{m}{a})^2 + (\frac{n}{b})^2 \right]^{1/2}$$

5.22g

For a non-trivial solution, m and n can not both be zero. Equation (5.22d) provides a cutoff on the wave vector, k, since for $k^2 < 0$ the factor e^{ikz} becomes $e^{\pm ikz}$ and the wave would not propagate. The full solution for each TE$_{mn}$ mode is:

$$\mathbf{B}_t = i(\omega^2 \epsilon \mu - k^2)^{-1}k\nabla B_z e^{i(kz - \omega t)};$$

5.23a

$$\mathbf{B}_t(m,n) = -ik\left[(\frac{m\pi}{a})^2 + (\frac{n\pi}{b})^2 \right]^{-1} B_o, m, n \{ \delta(m\pi x/a) \sin(m\pi x/a) \cos(n\pi y/b) \} e^{i(kz - \omega t)}$$

$$+ \delta(n\pi/b) \cos(m\pi x/a) \sin(n\pi y/b) \} e^{i(kz - \omega t)}$$

$$\mathbf{E}_t = -\frac{\omega}{k}(\hat{\mathbf{z}} \times \mathbf{B}_t)$$

$$k^2 = \epsilon \mu \omega^2 - \left[(\frac{m\pi}{a})^2 + (\frac{n\pi}{b})^2 \right]$$

The solution for $m = 1, n = 0$ is:
\[
\begin{align*}
\mathbf{B}_t &= -i \frac{k\alpha}{\pi} B_o \hat{s} \sin(\pi x/a) \exp i(kz - \omega t) \\
\hat{z} B_z &= \hat{z} B_o \cos(\pi x/a) \exp i(kz - \omega t) \\
\mathbf{E}_t &= i \frac{oa}{\pi} B_o \hat{s} \sin(\pi x/a) \exp i(kz - \omega t)
\end{align*}
\]

There is no propagation for
\[
\omega < \frac{1}{\epsilon\mu} \left(\frac{\pi}{a} \right)^2
\]

Note the 90 degree phase difference between the B_x and B_z arising from the $-i = e^{-i\pi/2}$ factor. The \mathbf{B}_t and \mathbf{E}_t are 180 degrees out of phase.

Usually one designs the wave guide so that the $m = 1, n = 0$ mode is the dominant TE mode. One can define the general k_{mn} as follows:

\[
\begin{align*}
k_{mn} &= \sqrt{\epsilon\mu} \sqrt{\omega^2 - \omega_{mn}^2} \\
\omega_{mn} &= \frac{\pi}{\sqrt{\epsilon\mu}} \left[\left(\frac{m}{a} \right)^2 + \left(\frac{n}{b} \right)^2 \right]^{1/2}
\end{align*}
\]

For each mode, the k_{mn} varies with frequency $\omega > \omega_{mn}$. The ω_{mn} is the cutoff frequency for the mode. In Fig. 8.4 from Jackson is a plot of $k_{mn}/(\omega \sqrt{\epsilon\mu})$ as a function of ω, where $k_\lambda = k_{mn}$.

It is often convenient to choose the dimensions of the waveguide so that at the operating frequency only the lowest mode can occur. Since the wave number, k_{mn}, is always less than the "free space" value, $\sqrt{\epsilon\mu} \omega$, the wavelength in the waveguide is always larger than the free space wavelength.

For the TM modes:

![Figure 8.4](image)
Figure 8.4 Wave number k_λ versus frequency ω for various modes λ. ω_{λ} is the cutoff frequency.
\(E_z = E_0 \sin(m\pi x/a) \sin(n\pi y/b) e^{i(kz - \omega t)} \)

\(E_z |_{S} = 0 \) at \(x = 0, a, \) and \(y = 0, b \)

\[
E_t = i(\omega^2 \epsilon \mu - k^2)^{-1} k \nabla E_z
\]

\[
= i(\omega^2 \epsilon \mu - k^2)^{-1} k E_0 [\hat{x}(m\pi/a) \cos(m\pi x/a) \sin(n\pi y/b) \\
+ \hat{y}(n\pi/b) \sin(m\pi x/a) \cos(n\pi y/b)] e^{i(kz - \omega t)}
\]

\[
B_t = \frac{\omega \epsilon \mu}{k} (\hat{\mathbf{z}} \times E_t)
\]

\[
k^2 = \epsilon \mu \omega^2 - \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right]
\]

In the TM modes if \(n = 0 \) or if \(m = 0, E_z = 0. \) Hence \(E_t \) and \(B_t \) are also zero. The next possible mode is \(n = m = 1 \) with

\[
\omega_{11} = \frac{\pi \sqrt{\epsilon \mu}}{a} \left[\left(\frac{1}{a} \right)^2 + \left(\frac{1}{b} \right)^2 \right]^{1/2}
\]

\[
\omega_{\text{min TM}} = \omega_{11} > \omega_{\text{min TE}} = \frac{\pi \sqrt{\epsilon \mu}}{a}
\]

Thus \(\text{TE}_{10} \) mode has the smallest cutoff frequency.

Higher order modes:

The following shows the \(E_t \) for some TE modes \((E_z = 0) \). (Taken from N. Stoyanov, Department of Chemistry, MIT, Ph.D. thesis, 2003)
Summary of TE and TM

TE modes:

\[E_z = 0; \quad \frac{\partial B_z}{\partial n} \mid_S = 0 \]

\[B_z(x,y) = B_0 \cos(m \pi x/a) \cos(n \pi y/b) e^{i(kz-\omega t)} \]

\[B_t = ik \left[\left(\frac{m \pi}{a} \right)^2 + \left(\frac{n \pi}{b} \right)^2 \right]^{-1} \nabla B_z \]

\[E_t = -\frac{\omega}{k} (\hat{z} \times B_t) \]

\[k^2 = \varepsilon \mu \omega^2 - \left[\left(\frac{m \pi}{a} \right)^2 + \left(\frac{n \pi}{b} \right)^2 \right] \]

TM modes:

\[B_z = 0; \quad E_z \mid_S = 0 \]

\[E_z(x,y) = E_0 \sin(m \pi x/a) \sin(n \pi y/b) e^{i(kz-\omega t)} \]

\[E_t = ik \left[\left(\frac{m \pi}{a} \right)^2 + \left(\frac{n \pi}{b} \right)^2 \right]^{-1} \nabla E_z \]

\[B_t = \frac{\omega \varepsilon \mu}{k} (\hat{z} \times E_t) \]

Energy Flow in the Waveguide for TE Modes

The time averaged flux of energy is given by the real part of the following expression
\[
S = \frac{1}{2} (\mathbf{E} \times \mathbf{H}^*)
= \frac{1}{2\mu} (\mathbf{E}_t \times (\mathbf{B}_t + \mathbf{z} \mathbf{B}_z)^*)
= -\frac{\omega}{2\mu k} (\mathbf{z} \times \mathbf{B}_t) \times (\mathbf{B}_t + \mathbf{z} \mathbf{B}_z)^*
= \frac{\omega}{2\mu k} [\mathbf{z} \mathbf{B}_t \cdot \mathbf{B}_t^* - \mathbf{B}_t \mathbf{B}_z^*]
\]

5.30

\[
\hat{z} \cdot S = \frac{\omega}{2\mu k} \left[-k^2 \left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right] \nabla_l B_z \cdot \nabla_l B_z^* - \nabla_l B_z \cdot \nabla_l B_z^*
= C(\omega, m, n) \nabla_l B_z \cdot \nabla_l B_z^*
\]

Now we can integrate this over the cross section of the waveguide to find the power:

\[
P_{TE} = \int \int \hat{z} \cdot S dA
= C(\omega, m, n) \int \int [\nabla_l \cdot \nabla_l B_z^+] dA
= C(\omega, m, n) \int [\nabla_l \cdot (B_z \nabla_l B_z^*) - B_z \nabla_l^2 B_z^+] dA
= C(\omega, m, n) [\oint B_z \nabla_l B_z^* \cdot d\mathbf{r} - \int \int B_z \nabla_l^2 B_z^* dA]
\]

boundary

\[
= C(\omega, m, n) [\oint B_z \nabla_l B_z^* \cdot d\mathbf{r} - \int \int B_z \nabla_l^2 B_z^* dA]
= C(\omega, m, n) [\oint B_z (\hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y}) B_z^* \cdot d\mathbf{r} - \int \int B_z \nabla_l^2 B_z^* dA]
= C(\omega, m, n) [\oint B_z (dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y}) B_z^* \cdot d\mathbf{r} - \int \int B_z \nabla_l^2 B_z^* dA]
= 0 + C(\omega, m, n) \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right] \int \int B_z B_z^* dA
= \frac{\omega}{2\mu} \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right] \int \int B_z B_z^* dA
\]

5.31

The corresponding value for TM modes is

\[
P_{TM} = \frac{\omega^2 \mu}{2\varepsilon \mu} \left[\sqrt{1 - \frac{\omega_m^2}{\omega^2}} \right] \int \int E_z E_z^* dA
\]

5.32

Thus at fixed frequency, the power is inversely proportional to the \(\omega_m^2\) and the smallest mode numbers correspond to maximal power.