Problem Set 1

1.1. The charge density for a hydrogenic p state can be written as

\[\rho(r, \theta) = \frac{2}{3} \frac{e}{a_0^3} \frac{1}{64\pi} \left(\frac{r}{a_0} \right)^2 \exp\left(-\frac{r}{a_0} \right) [P_0(\cos \theta) - P_2(\cos \theta)] \]

\[e = 4.8 \times 10^{-10} \text{ statCoulomb}, \quad a_0 = 0.529 \times 10^{-8} \text{ cm}. \]

(a) Determine the multipole moments of this charge distribution and give the potential for large \(r \) in terms of these moments. (b) Determine the potential, near the origin, correct to order \(r^2 \). (c) Determine the interaction energy with a nuclear quadrupole moment, \(Q = 10^{-24} \text{ cm}^2 \), located at the origin.

1.2: Obtain the transverse and longitudinal components of the current densities:

\[\mathbf{j}(r, t) = \text{Re} \left\{ e^{-i\omega t} i_0 \left[\Theta \left(z + \frac{a}{2} \right) - \Theta \left(z - \frac{a}{2} \right) \right] \delta(x) \delta(y) \right\} \mathbf{k} \]

\[b) \quad \mathbf{j}(r, t) = \text{Re} \left\{ e^{-i\omega t} i_0 \delta(z) \delta(\rho - b) \right\} \Phi, \text{ cylindrical coordinates} \]

(c) For each current density obtain the related charge density (charge conservation) and the potential which vanishes at points infinitely far from the charges.

(d) Verify that Eq. 1.42 is correct.