Problem Set 3:

1. (Jackson 6.20).
 An example of the preservation of causality and finite speed of propagation in spite of the use of the Coulomb gauge is afforded by a unit strength dipole source that is flashed on and off at $t = 0$. The charge and current densities are
 \[
 \rho(r, t) = \delta(x)\delta(y)\delta'(z)\delta(t)
 \]
 \[
 J(r, t) = -e_3 \delta(x)\delta(y)\delta(z)\delta'(t)
 \]
 where a prime means differentiation with respect to the argument. This dipole is of unit strength and it points in the negative z direction.

 (a) Show that the instantaneous Coulomb potential (6.23 in text) is
 \[
 \phi(r, t) = -\frac{1}{4\pi\epsilon_o} \frac{z}{r^3} \delta(t).
 \]

 (b) Show that the transverse current, J_t, is
 \[
 J_t(r, t) = -\left[e_3 \frac{2}{3} \delta'''(r) + \frac{1}{4\pi} \frac{3n \cdot e_3}{r^3} - e_3 \right] \delta'(t)
 \]
 where $n = \hat{r}$, a unit vector along the r direction and the $\frac{2}{3}$ factor multiplying the delta function comes from treating the gradient of $\frac{z}{r^3}$ according to (4.20 in text.)

 (c) Show that the electric and magnetic fields are causal and that the electric field components are given by:
 \[
 E(r, t) = e_3 \frac{c}{r} \left[\delta''(ct - r) + \frac{1}{r^2} \delta(r - ct) - \frac{1}{r} \delta'(r - ct) \right]
 \]
 \[
 - r \frac{cz}{r^3} \left[\delta''(r - ct) - \frac{3}{r} \delta'(r - ct) + \frac{3}{r^2} \delta(r - ct) \right]
 \]
 Hint: While the answer in part b displays the transverse current explicitly, the less explicit form,
 \[
 J_t(r, t) = -e_3 \delta(r)\delta'(t) - \delta'(t) \frac{1}{4\pi} \frac{\partial}{\partial z} \left(\nabla \frac{1}{r} \right)
 \]
 can be used with (6.47 in text) to calculate the vector potential and the fields for part c. An alternative method is to use the Fourier transforms in time of J_t and A, the Green’s function (6.40) and its spherical wave expansion from Chapter 9.

2. Using the retarded Green’s function and the Lorentz gauge, find the electrostatic potential, $\Phi(r, t)$, generated by a point charge, Q, moving with velocity v_o. Assume $\Phi(r, t) \rightarrow 0$ and $\partial\Phi(r, t)/\partial t \rightarrow 0$ as $t \rightarrow -\infty$. Hint: Do the space integration first and recall the definition of the Dirac delta function whose argument is a function.

 You might also find it useful to use the following expressions to simplify the notation:
 \[
 \tau \equiv ct
 \]
 \[
 \tau' \equiv ct'
 \]
$\beta \equiv \frac{v_0}{c}$

$R \equiv r - \beta \tau = r - vot$

$W \equiv \tau - \tau'$

Note that $|R + \beta W| = |r - vot'|$