Problem Set 4:

(Assignment 5) For a given system the electric field and current density are given by Assignment 5

\[\mathbf{E}(\mathbf{r}, t) = E_0 \exp \left[-\frac{(z - ct)^2}{2L^2} \right] \cos(k_0(z - ct)) \mathbf{e}_1 \]

\[\mathbf{J}(\mathbf{r}, t) = J_0 \exp \left[-\frac{(z - ct)^2}{2L^2} \right] \cos(k_0(z - ct) + \phi_0) \mathbf{e}_1 \]

(a) Calculate the magnetic flux density, \(\mathbf{B}(\mathbf{r}, t) \).

(b) Calculate the frequency dependent fields and current densities \(\mathbf{e}(\mathbf{r}, \omega) \), \(\mathbf{b}(\mathbf{r}, \omega) \), and \(\mathbf{j}(\mathbf{r}, \omega) \).

(c) What are the units of these three quantities in the gaussian units used by Jackson, in the SI (MKSC) units?

(d) Starting with the results of part (b) evaluate \(\mathbf{e}(\mathbf{r}) \), \(\mathbf{b}(\mathbf{r}) \), and \(\mathbf{j}(\mathbf{r}) \) defined in the notes.

(e) Let \(\phi_0 = \pi/6 \) and \(k_0L = 2 \times 10^{12} \pi \) and calculate the time average of \(\mathbf{E}(\mathbf{r}, t) \cdot \mathbf{J}(\mathbf{r}, t) \) over the period from \(t = -T/2 \) to \(t = +T/2 \) at \(z = \pm L \) and at \(z = 0 \). (Note, a tabulated integral)

(f) Plot the results of part (e) for \(0 < cT/L < 1 \).

(Assignment 6A) Jackson Problem 7.19 -

An approximately monochromatic plane wave packet in one dimension has the instantaneous form, \(u(x, 0) = f(x) \exp(i k_0 x) \) with \(f(x) \) the modulation envelope.

\[(1) f(x) = N_1 \exp \left(-\frac{a|x|}{2} \right) \]

\[(2) f(x) = N_2 \exp \left(-\frac{a^2 x^2}{4} \right) \]

\[(3) f(x) = N_3 (1 - a|x|) \Theta(1 - a^2 x^2) \]

\[(4) f(x) = N_4 \Theta(1 - a^2 x^2) \]

(a) Calculate the wave number spectrum \(|A(k)|^2 \) for each of the above forms for \(f(x) \).

(b) Explicitly evaluate the rms deviations from the mean, \(\Delta x \) and \(\Delta k \).

(c) Using graphs compare the functions \(|f(x)|^2 \) and the functions \(|A(k)|^2 \).