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We develop a theoretical model from an energetic viewpoint for unraveling the entangled effects of metabolic
and biosynthetic rates on oxidative cellular damage accumulation during animal's growth, and test the model
by experiments in hornworms. The theoretical consideration suggests that most of the cellular damages caused
by the oxidativemetabolism can be repaired by the efficientmaintenancemechanisms, if the energy required by
repair is unlimited. However, during growth a considerable amount of energy is allocated to the biosynthesis,
which entails tradeoffs with the requirements of repair. Thus, the model predicts that cellular damage is more
influenced by the biosynthetic rate than the metabolic rate. To test the prediction, we induced broad variations
in metabolic and biosynthetic rates in hornworms, and assayed the lipid peroxidation and protein carbonyl.
We found that the increase in the cellular damage was mainly caused by the increase in biosynthetic rate, and
the variations in metabolic rate had negligible effect. The oxidative stress hypothesis of aging suggests that
high metabolism leads to high cellular damage and short lifespan. However, some empirical studies showed
that varying biosynthetic rate, rather than metabolic rate, changes animal's lifespan. The conflicts between the
empirical evidence and the hypothesis are reconciled by this study.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The deleterious products of oxidative metabolism, such as reactive
oxygen species, cause various forms of cellular damages, which in turn
undermine the organism's health maintenance and longevity (Balaban
et al., 2005; Barja, 2004). To counteract the accumulation of damage, or-
ganisms have evolved highly efficient repair mechanisms, such as oxi-
dant scavenging and damage repair (Beckman and Ames, 1998;
Monaghan et al., 2009). These repair mechanisms require energy and
resources. If the resources and energy that could be allocated to repair
are otherwise channeled to other biological processes, then damage
will inevitably accumulate despite the high repair efficiency
(Monaghan et al., 2009).

Biosynthesis during growth, one of themost intensively investigated
biological processes that trades off with repair, is positively correlated
with oxidative damage level and proxies of it, such as declined perfor-
mance and shortened lifespan at whole organismal level (Hou, 2013;
5409, United States.

. This is an open access article under
Mangel and Munch, 2005; Mangel and Stamps, 2001; Miller et al.,
2002) and molecular and cellular level (Bartke, 2005; Rollo et al.,
1996). Rapid growth leads to higher phospholipid peroxidation
(Nussey et al., 2009), protein carbonyl content (Forster et al., 2000), de-
creased antioxidant defenses in red blood cells (Alonso-Alvarez et al.,
2007), elevated free radical processes (Rollo et al., 1996), declined loco-
motion ability (Mangel and Stamps, 2001), impaired immune function
(De Block and Stoks, 2008), and higher mortality rate and shortened
lifespan (Bartke, 2005; Merry, 1995; Miller et al., 2002). A special type
of rapid growth—catch up growth, referring to infants with low birth
weight reaching to or exceeding the normal bodyweight later in life, in-
creases the risk of adult-onset metabolic syndromes and short lifespan
in human and laboratory rodents (Metcalfe and Monaghan, 2001). In
contrast, suppressed growth, usually induced by food restriction
(Masoro, 2005; Merry, 2002; Weindruch andWalford, 1988) or genetic
modification of growth hormone (Bartke, 2005; Brown-Borg, 2003), has
been long known to keep animals in a relatively youthful and healthy
state, and greatly extends lifespan in a broad diverse of species, indicat-
ing the up-regulations of somatic damage repair in these animals. We
need to emphasize that the observed relationship between biosynthesis
and cellular damage and/or longevity is not merely a statistical
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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correlation. As many studies have shown (Hou, 2013; Hou and
Amunugama, 2015; Lee et al., 2011; Lee et al., 2013; Mangel and
Munch, 2005; Metcalfe and Monaghan, 2003), the nature of this associ-
ation is causal and effect. We will give detailed explanations in the fol-
lowing sections and the Supplementary Materials.

Attempting to interpret the positive correlation between biosynthe-
sis and cellular damage, many researchers have argued that increased
biosynthetic rates cause increased metabolic rate, which, as a primary
source of free radicals, in turn leads to increased cellular damage
(Monaghan et al., 2009; Nussey et al., 2009). However, although biosyn-
thesis is fueled by metabolism, the relationship between them is not
simply proportional. When one of them increases, the other may in-
crease (Ricklefs, 2003; West et al., 2001), decrease (Hayes et al., 2015;
Steyermark, 2002), or keep roughly the same (Álvarez and Nicieza,
2005; McCarter and Palmer, 1992). The complex relationships between
them make their effects on cellular damage difficult to isolate. Rates of
metabolism and biosynthesis may have different degrees of impacts
on cellular damage, i.e., the same degree of variations in these rates
may lead to different relative changes in damage. However, in most
studies the observed changes in cellular damage reflect the combined
influences of changes in both metabolic and biosynthetic rates. When
these two rates vary independently or even in the opposite direction,
the separate effects of each on cellular damage are obscured.

The goal of this paper is to unravel the effects of biosynthetic and
metabolic rate on cellular damage accumulation.Wefirst develop a sim-
ple theoreticalmodel based on thefirst principle of energy tradeoffs and
real physiological parameters. Themodel predicts that, if the repair effi-
ciency is high, then the changes in damage level caused by the changes
in metabolic rate is negligible, and the damage level is more sensitive to
the changes in biosynthetic rate. We then test the model by experi-
ments on the 5th instar tobacco hornworms (the last instar ofManduca
sexta larvae). We measured lipid peroxidation and protein carbonyl as
two indexes of cellular damage accumulation in larvae with different
rates of growth and metabolism.

2. Methods

2.1. The theoretical model

Recently we have developed a theoretical model grounded on em-
pirical data for understanding how animals alter their energy budgets
on damage repair, biosynthesis, and energy storage in the face of envi-
ronmental changes, and how the alteration in energy budget affects
the cellular damage accumulation (Hou, 2013; Hou, 2014; Hou and
Amunugama, 2015; Hou et al., 2011). Some of the quantitative predic-
tions on relationship between growth suppression and lifespan exten-
sion are strongly supported by data collected from wild animals across
a broad range of species and N200 empirical studies on small laboratory
rodents (Hou, 2013; Hou and Amunugama, 2015; Hou et al., 2011).

In this paper, we extend the model and make predictions on the re-
lationship between cellular damage, metabolic rate, and biosynthetic
Fig. 1. Schematic illustration of the tradeoff betweenmaintenance and biosynthesis. In Panel (A
rate), and the same level of raw cellular damage. The animal in Panel (A) allocates small amount
and the net damage level is low. In contrast, the animal in Panel (B) allocates a large fraction ofm
level is high due to inadequate energy allocation to maintenance.
rate. The detailed assumptions and derivation of the equations of the
model have been published (Hou, 2013; Hou, 2014; Hou and
Amunugama, 2015). Here we only introduce it briefly. The key idea of
the model is summarized in Fig. 1. In brief, the oxidative metabolism
causes cellular damage. Animals have highly efficient repair mecha-
nisms,which require energy. If the “repair engine” has adequate energy,
thenmost of the damage can be repaired, regardless of howhigh the ox-
ygen consumption rate is (as shown in Fig. 1(A)). However, during
growth, animals allocate a considerable amount of metabolic energy
to biosynthesis, so the energy allocated to repair is inadequate. Al-
though the “repair engine” is still efficient, the net damage will be
large due to the low energy input (as shown in Fig. 1(B)).

The theoretical model is based on two assumptions.

Assumption 1. Within a species, the rate of somatic damage production,
H, caused by deleterious products of oxidative metabolism, such as reac-
tive oxygen species (ROS), is proportional to the rate of oxygen consump-
tion (metabolic rate, B), asH= δB, where δ is a constant within a species,
indicating the amount of damagedmass associated with one unit of met-
abolic energy. The proportionality between ROS production andmetabol-
ic rate holds generally within one species living under normal conditions.
However, under certain conditions, ROS production can be
disproportionally lower for a given metabolic rate (lower δ). We discuss
in detail how our model handles these cases in the section of Discussion.

Assumption 2. Repairing the damage requires metabolic energy. The
rate of repair, R (repaired mass/time), is proportional to the energy
available for maintenance, Bmaint, with a coefficient η, i.e., R = ηBmaint,
where η is also a constant, indicating the amount of mass that can be
repaired by one unit of availablemetabolic energy. The energy allocated
tomaintenance is the difference between the totalmetabolic energy (B)
and the energy spent on biosynthesis Bsyn, i.e., Bmaint = B − Bsyn (West
et al., 2001).

The net damage,H−R, accumulates, which can be integrated as a
function of time, i.e.,FðtÞ ¼ ∫t0ðδB−ηBmaintÞdτ. We rewrite this equation

asDðtÞ ¼ FðtÞ=δ ¼ ∫t0ðB−εBmainÞdτ, where ε= η/δ is the effective repair
efficiency, indicating the ratio of repaired mass and damaged mass for
one unit of energy, and D(t) can be considered the recalibrated net cel-
lular damage. To estimate damage, we substitute the equations B =
Bmaint + Bsyn in D(t), and obtaion

D tð Þ ¼
Z t

0
B−ε � Bmaintð Þdτ

¼
Z t

0
B−ε � B−Bsyn

� ��dτ
¼ 1−εð Þ

Z t

0
Bdτ þ ε

Z t

0
Bsyndτ

¼ 1−εð Þ �ME þ ε � SE

ð1Þ

whereME ¼ ∫t0Bdτ is themetabolic energy spent during growth (in unit

of joules); SE ¼ ∫t0Bsyndτ is the energy spent on biosynthesis during
) and (B), the hypothetical animals have the same level of oxygen consumption (metabolic
of energy to biosynthesis so that the efficient repairmechanism acquires adequate energy,
etabolic energy to biosynthesis. Thus, despite the high repairing efficiency the net damage



Fig. 2. Food treatments induce 4-fold of variation inmetabolic energy (Panel (A), (D), and (G)), 4-fold of variations in synthetic energy (Panel (B), (E), and (H)), and 9-fold of variation in
damage level (Panel (C), (F) and (I)), respectively. Each dot represents an individual caterpillar that belongs to a food treatment cohort. Four cohorts represented in colors are: black: AL,
red: SFR-A, blue: SFR-B, and green: LFR. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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growth, which is the product of the increase of bodymass and the ener-
gy required to synthesize one unit of biomass.

Eq. (1) decomposes thenet damage accumulation in two terms,DB=
(1−ε) ×ME andDsyn= ε× SE, estimating the effects ofmetabolismand
biosynthesis on damage accumulation separately. Both terms are pro-
portional to energy factors (ME and SE) with coefficients 1 − ε and ε
Table 1
Description of 6-, 5-, and 4-day food treatments.

Cohort

6-Day experiment 5-Day experiment 4-Day experiment

Day 1–3 Day 4 and 5 Day 1 and 2 Day 3 and 4 Day 1 and 2 Day 3

AL AL AL AL AL AL AL
SFR-A AL FR AL FR AL FR
SFR-B FR AL FR AL FR AL
LFR FR FR FR FR FR FR

In each experiment, we applied different food treatments to four cohorts, free-feeding
(AL), Short-food-restriction-A (SFR-A), Short-food-restriction-B (SFR-B), and Long-food-
restriction (LFR). Table 1 describes the length of each kind of food treatment. For example,
in the 6-day experiment, for the cohort SFR-A, the food supply was ad libitum (AL) from
day 1 to day 3, and then switched to food restriction (FR) from Day 4 to Day 5. For larvae
under food restriction, the amount of food was given based on individual's bodymass, asF
=0.27×m+0.44, where F andm are thewetmass of food and body in unit of gram. This
restriction level is designed based on our previous result (Hayes et al., 2015), so that the
food uptake rate of food restricted cohorts is about 50% of that of the AL cohort.
respectively. The sensitivities of damage to the changes in metabolic
and biosynthetic rate depend on the coefficients of these two terms,
1 – ε and ε. Based on fitting of empirical data and the first principle of
biochemistry for cellular oxidation by ROS, the repair efficiency ε has
been estimated to be in the neighbourhood of 0.99 ((Hou, 2013; Hou
et al., 2011) and the SupplementaryMaterial). For such a high efficiency,
the metabolic term in Eq. (1), (1−ε) × ME, is close to zero, regardless
how metabolic energy (ME) changes. The major contribution to the
net damage therefore comes from the biosynthetic term, ε × SE. This
means that the damage accumulation is more sensitive to the biosyn-
thetic term (SE) than to the metabolic term (ME).

Here, we test whether cellular damage is more sensitive to growth
rate than to metabolic rate, as predicted by our theoretical model. We
induced broad variations in metabolic energy (ME) and synthetic ener-
gy (SE) among individual 5th instar hornworms by varying the level of
food supply in three experiments, namely 4-day, 5-day and 6-day food
treatment. We then assayed the corresponding protein and lipid dam-
age levels in individual hornworms, using protein carbonyl frommidgut
tissue (CARB) and plasma malondialdehyde (MDA) as surrogates. The
carbonyl groups are produced on protein side chains when they are
oxidised (Dalle-Donne et al., 2003) and the protein carbonyls are accu-
mulated (Negre-Salvayre et al., 2008). MDA is one of the secondary de-
composition products of polyunsaturated fatty acids generated by lipid
peroxidation, and is widely used to assess oxidative damage level (Hall
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et al., 2010;Monaghan et al., 2009; Nussey et al., 2009). MDAmakes ad-
ducts with proteins and induces cell dysfunctions that are responsible
for disrupting normal cell responses. MDA and other aldehydes formed
during lipid peroxidation make carbonyl compounds with proteins and
these compounds are found to be accumulated during aging. MDA ad-
ducts form fluorescence pigment lipofuscin, and it is progressively accu-
mulated with aging (Negre-Salvayre et al., 2008), and MDA-lysine
adduct is accumulated in plasma proteins and in hepatocytes in iron
overloaded rats (Houglum et al., 1990).

We assume that the levels of MDA and CARB are proportional to the
total cellular damage (variable, D, in Eq. (1)) with a factor g, asMDA (or
CARB) = g × D, and therefore Eq. (1) becomes

Damage ¼ g � 1−εð Þ �MEþ g � ε � SE; ð2Þ

where Damage denotes the level of MDA or CARB.
We need to emphasize that damage accumulates over the entire

growth, so a considerable fraction of damage assayed in this study
was accumulated during the first four instars of the larval lives, whereas
our treatments only started when the larvae entered the 5th instar.
Thus, to test how variations in these rates influence the damage accu-
mulation, we must remove the effects of un-manipulated ME and SE in
the first four instars from the assayed damage level (MDA and CARB).
Previous studies, as well as this study, show that both ME and SE, the
metabolic and synthetic energy spent during a period of growth, are lin-
early proportional to the bodymass at the endof this period (see Fig. 2A,
B, and (West et al., 2001)). So, removing the effects ofME and SE during
the first four instar can be done by removing the effect of the bodymass
at the end of the 4th instar from assayed damage.We linearly regressed
the damage level on this bodymass. The residual of damage after the re-
moval of this mass is then considered the damage caused by SE andME
during the 5th instar period—the experimental period. The damage
level during the 5th instar, SE, and ME are all linearly correlated to the
final body mass at the end of the experimental period, M (Fig. 2). This
means that the final body mass has a confounding effect when
performing a linear regression of the damage level during the 5th instar
on ME and SE. We investigate the confounding effect of final mass on
these variables in twoways. First, we control thefinalmass by including
it in amultiple linear regression analysiswith SE andME to predictDam-
age level at 5th instar (details are described in Methods section). We
Table 2
Linear regression results of Damage level (both MDA and CARB) on metabolic energy (ME) and

Model B without measurement error: Damageresidual ¼ β0 þ β1 �MEresidual þ β2 � SEresidua

Experiment Coefficients t

β0 6-day MDA 1.22 × 10−11 0
5-day CARB −1.22 × 10−14 0
4-day MDA 2.5 × 10−8 0

β1 of MEresidual 6-day MDA 0.372 1
5-day CARB 0.001 1
4-day MDA 0.394 0

β2of SEresidual 6-day MDA 32.608 3
5-day CARB 0.109 2
4-day MDA 9.949 1

R = 0.408 (6-day), =0.499 (5-day), and =0.50 (4-day)
Condition index = 1.54 (6-day), =1.29 (5-day), and =1.38 (4-day)
N = 72 (4-day), =42 (5-day), and =61 (6-day)

Model C with measurement error (6-day experiment)

Coefficients t-Values

β0 −1.64 × 10−11 0.000
β1 of MEresidual 0.386 1.09
β2of SEresidual 32.762 3.44
R = 0.408; Condition index = 1.54

In Table 2, we list the results of themultiple linear regression using Model B. For each coefficien
bottom of the table, we list the R values and condition indexes of the overall regression for eac
also run an alternative model by removing the confounding effect of
final mass by performing separate linear regressions of Damage, ME,
and SE on final body mass and calculating the mass residuals in each
of the three analyses. We then regress the mass residual of Damage on
the mass residuals of ME and SE, as

Damageresidual ¼ β0 þ β1 �MEresidual þ β2 � SEresidual ð3Þ

whereβ0,β1, andβ2 are estimated regression coefficients. Eq. (3) allows
us to write themodel in the form of Eq. (2) for comparison.We present
results from both approaches, but use the model employed for regres-
sion Eq. (3) as the focus of our predictions.

Comparing the theoretical Eq. (2) and the regression Eq. (3), we
make three predictions.

First, the fitted regression coefficient of the metabolic term,β1, is
smaller than that of the biosynthetic term, β2;

Second, the ratio of the coefficients,β1 andβ2, givesβ1=β2 ¼ ð1−εÞ=ε
. We predict that the repairing efficiency (ε) estimated from this equa-
tion is in the neighbourhood of 0.99, which is the value previously esti-
mated from data fitting and biochemistry principles for cellular
oxidation by ROS. (Hou, 2013; Hou et al., 2011) (Details of estimating
ε are given in the Supplementary Material).

And third, and more importantly, the partial correlation between
Damage level and themetabolic term (ME) is insignificant after account-
ing for SE (P-value N 0.05), whereas that between Damage and the syn-
thetic term (SE) is significant after accounting for ME (P b 0.05);

2.2. Animal rear and food supply levels

We induced variations in metabolic energy (ME) and biosynthetic
energy (SE) by varying food supply levels in 4-day food treatment and
6-day treatment for MDA measurements, each with approximately 80
hornworms. Another ~40 hornworms were treated for 5 days for pro-
tein carbonyl measurements. The details of animal rearing are available
in the SupplementaryMaterial. In short, on thefirst day of the 5th instar,
larvae were randomly separated and treated with four levels of food
supply. The four cohorts were free-feeding (AL), short-term food re-
striction-A (SFR-A), short-term food restriction-B (SFR-B), and long-
term food restriction (LFR). The length of free feeding and food restric-
tion and the level of food restriction for each cohort are described in
biosynthetic energy (SE), using Model B.

l

-Values P-values Partial correlation VIF

.000 1.000 _ _

.000 1.000 _ _

.000 1.000 _ _

.060 0.294 0.138 1.20

.688 0.099 0.261 1.07

.651 0.517 0.078 1.11

.384 0.001 0.406 1.20

.146 0.038 0.325 1.07

.913 0.060 0.224 1.11

P-values Partial correlation VIF

1.000 _ _
0.285 0.138 1.20
0.001 0.406 1.20

t, namelyβ0,β1, andβ2, we show the results from the 4-, 5-, and 6-day experiments. At the
h data-set. The parameter, Em, was taken to be 177 J/g for the regression.
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Table 1. All larvae were sacrificed at the end of the 6-day and 4-day ex-
periments for MDA and 5-day experiment for CARB measurements.

2.3. Synthetic energy spent during the experimental period

Bodymass of each larva in every cohortwasmeasured approximate-
ly at the same time every day from the first day of the 5th instar to the
nearest 0.1 mg using a digital microbalance (Perkin-Elmer AD6). The
energy spent on biosynthesis during the experiment, SE, in unit of
Joules, was calculated as the increment of body mass from the 1st day
to the last day of the experiment,Δm, multiplied by the energy required
to synthesis one unit of biomass, Em , i.e., SE=Δm× Em. The value of Em
in 5th instar hornworm was taken to be 177 J/g, which is very close to
the value estimated by Sears et al., 168 J/g (Sears et al., 2012) (1197 J/
g of drymass, and dry/wet mass ratio is 14% throughout the 5th instar).
Our independent assays using the method described in Peterson et al.
(Peterson et al., 1999) gave a range of this parameter from 143 to
212 J/g (Details in the Supplementary Materials). We took the average,
177 J/g, and the upper and lower limit of the range estimated by us (143
and 212 J/g) to perform the data analysis.

2.4. Metabolic energy spent during the experimental period

The details of respirometry are available in the Supplementary Mate-
rial and reference (Hayes et al., 2015). In short, we measured the ex-
change rate of O2 and CO2 of each larva for 7–10 min time interval
every day using Sable System International (Las Vegas, U.S.A.) CA-10
CO2 and FC-10O2 analyzers at 25 °C.We then converted them tometabol-
ic rate (in Watts). We assumed that metabolic rate of each caterpillar in-
creases linearly between two successive measurements (approximately
24 h apart) due to the body mass increase during the day. Based on this
assumption,we calculated themetabolic energy consumed in a particular
day as 24 hmultiplied by themean value of the ratesmeasured at the be-
ginning and the end of the 24-h period in unit of Joules. Themetabolic en-
ergy (ME) was defined as the sum of larvalmetabolic energy expenditure
each day during the experiment in unit of Joules.

Due to the random activity rhythm of hornworms, metabolic rate
did not keep a constant, even after the effect of increasing body mass
was removed. Thus, the random activity produced an inherent un-
known measurement error. We incorporated the amount of variability
in themeasurement errors into the statistical analysis.Measurement er-
rors were estimated for each individual as follows. The gas analyzers
took samples every second, so the ~10 min of respirometry generated
a time-series curve. We calculated the standard deviation of each
curve, which was the estimated measurement error of metabolic rate
of one individual caused by the random activity. We then calculated
the percentage of the standard deviation as SD/mean × 100%, and as-
sumed this percentage represents the random activity during the day.
The standard deviation in the estimated measurement errors across in-
dividuals was then used as the estimated measurement error standard
deviation in the ensuing statistical analysis. This approach to estimating
measurement error variation is described in (Bland and Altman, 1996).

2.5. MDA and CARB assays

The MDA-HPLC method described by (Lin et al., 2006) was opti-
mized. The details are available in the Supplementary Material. In
short, we used HPLC with Alltima C18 column to assay the total plasma
MDA (free plus protein-bound) from the hemolymph samples of larvae
4-day and 6-day in their final instar. The assay depends on the forma-
tion of adducts betweenMDA and thiobarbituric acid (TBA) under heat.

For the protein carbonyl assay, wemodified the protocols (Krishnan
and Kodrík, 2006; Levine et al., 1990), which are based on spectropho-
tometric measurement of 2,4-dinitrophenylhydrazine (DNPH) deriva-
tives of protein carbonyls in midgut tissues of larvae 5-days in their
final instar. The details are available in the Supplementary Materials.
The measured damage levels, MDA concentration (in unit of nM/
mL) and protein carbonyl (in unit of nM/mg), are body mass-specific
quantities, whereas our model (Eqs. 1–3) makes predictions on the
total damage, metabolic energy, and biosynthetic energy in the whole
body. Thus we multiplied the damage level by the larval body mass on
the last day of the experiment, and used this value to test our theoretical
model. To keep the dimensions the same in the equation, we could also
use the perml values of MDA and the permg values of CARB, and divide
ME and SE by body mass, so that all the variables are mass-specific.
However, this would introduce the variable of body mass twice in the
regression equation (toME and SE), andwould give less accurate results,
compared to the method that only introduces bodymass once (to dam-
age). Moreover, the mass-specific (per mass) quantity can still be
strongly correlated to body mass. There are many such examples in
physiology (Hou et al., 2008; Kooijman, 2010). In our study, damage
perml ormg,mass-specificME, andmass-specific SE, were all correlated
to bodymass (R=0.3, P b 0.02 for damage, R=0.6, P b 10−6 for mass-
specific SE, and R = 0.24, P b 0.037 for mass-specific ME). Thus, even if
we take the mass-specific quantities to perform the multiple linear re-
gression, we would still need to remove the confounding effect of
body mass by estimating the mass-residuals of the variables.

2.6. Data analysis and statistics

In each experiment, we tested if food treatments induce significant
difference in Damage level (MDA and CARB) between each cohort. We
performed ANCOVA with Damage as the dependent variable, ME and
SE as the covariates, and food treatment as the fixed factor, using SPSS
21. ANCOVA yielded p N 0.1 between each pair of these four treatments
(see Results), indicating that the food treatments did not induce any dif-
ference in Damage level. Thus, in each experiment we pooled data from
four cohorts and regressed Damage level on ME and SE. Note that data
for each of the 4, 5, and 6 day experiments were analyzed separately
due to the inherent differences in the experiments that were performed
at different times. The 5 day experiment used a different damage assay,
while the 6 day induced more variation in damage than 4 day perhaps
because most of the body mass increase occured between the 3rd and
6th days.

However, this regression will cause two problems. First, these three
variables were linearly proportional to the final body mass on the last
day of the experiment. Thus, the confounding effect of body mass may
give false correlations between the dependent and independent variables.
Second, because of the confounding effects of bodymass,ME and SEwere
correlated to each other. Thus, there may be multicollinearity between
the independent variables, which often leads to unreliable and unstable
estimates of the regression coefficients in multiple regression. When
two independent variables are highly correlated, the one measured less
accurately will usually fall out as non-significant.

To address these issues, we first fit a multiple linear regression
model (Model A) with ME, SE, and final body mass (M) as predictors
of DamageW, the whole body Damage during the 5th instar. This
model controled for the confounding effect offinal bodymass, but intro-
duces severe multicollinearity due to the high correlation between final
bodymass and the other two predictors. In our second regressionmodel
(Model B), we removed the confounding effect of final mass on the var-
iables by calculating the mass residuals of each variable, and then re-
gress the mass residual of Damage on the mass residuals of ME and SE,
as shown in Eq. (3).

Model A: DamageW ¼ β0 þ β1 �MEþ β2 � SE þ β3 �M.
Model B (Eq. (3)): Damageresidual ¼ β0 þ β1 �MEresidual þ β2 � S

Eresidual.
To make sure that the independent variables (the mass residuals of

ME and SE) do not have multicollinearity in the multiple regression,
we calculated the variance inflation factors (VIF) and condition index
of the multiple regression. It has been commonly recommended that if
the value of VIF is below 10, and condition index is below 30,
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multicollinearity is not significant (Hair et al., 1995). We compared the
estimates forβ1, β2, and ε in all three models. These values should be
most alike between models A and B since both are ways to adjust for
the confounding effect of final mass.

We then included themeasurement errors in the secondmodel (Model
B). A linear regressionmodel (Damagei=β0+β1MEi+β2SEi+ errori)was
initially fit usingME and SE as explanatory variables to predict Damage.
In the standard linear regression model, the explanatory variables are
assumed to be measured without error, but this assumption is mislead-
ing sinceME cannot bemeasured perfectly aswe described above. Thus,
a linear regression model that accounts for the measurement error in
ME was fit using a latent variable approach (Fuller, 2009) in PROC
CALIS, SAS v.9.4. In this model, MEi⁎ = MEi + ui where MEi⁎ represents
the observed ME value, MEi represents the true (latent) value, and ui
represents the measurement error for individual i. It is assumed that
the measurement error is independent from the true value. The size of
the measurement error standard deviation (σu) is required to estimate
the regression coefficients and is estimated as the following. We esti-
mated the standard deviation of metabolic rate as the percentage of
the mean value of each sample curve. This procedure is described in
the previous section. This way, we obtained a distribution of the mea-
surement errors (percentage values). We then estimated the standard
deviation of the distribution, which is considered the size of the mea-
surement error standard deviation (σu), and used to estimate the
regression coefficients (Fuller, 2009).

3. Results

In the 6-day experiment, food treatments induced broad ranges of
variation in metabolic energy (ME from 4850 J to 16,540 J), synthetic en-
ergy (SE from 370 J to 1480 J ), and MDA level from 3510 nmol × g/ml to
35,610 nmol × g/ml (Fig. 2). All these variableswere linearly proportional
to the final body mass on the 6th day. The 4-day and 5-day experiments
had the similar results (Fig. 2). Starting and ending body mass for all the
treatments are given in the SupplementaryMaterial (Table S1). The treat-
ments did not induce any difference in Damage levels in either 4-day, 5-
day, or 6-day experiment. ANCOVA, using Damage as the dependent var-
iable, ME and SE as covariates, and food treatments as fixed factors,
showed that the assumption of homogeneous regression slopes was sat-
isfied (P N 0.05), and there was no difference in Damage level between
each pair of these four treatments (P N 0.1, Fig.2).

3.1. Results from linear regression model A

For the 6-day MDA assay, statistical values of model A (Table S2)
showed that ME and M were insignificantly correlated with MDA
(P N 0.05), but SE was significant (P b 0.005). The 4-day MDA results
showed insignificance for ME, SE and M (P N 0.05), but SE was at the
edge of significance (P= 0.062). The 5-day CARB assays showed that SE
and M were significantly correlated with CARB (P b 0.05), whereas ME
was insignificant (P N 0.05). However, in all these three experiments,
VIF values for SE andMwere larger than 10 and condition indexes were
larger than 30. So, we concluded the presence of multicollinearity, and
therefore the results ofModel A cannot be used to support our hypothesis.

3.2. Results from linear regression model B

Results of the residual model (Model B) showed that in all the 4-, 5-,
and 6-day experiments,MEwas insignificant (P N 0.05), whereas SEwas
significant (p b 0.001) in the 6-day MDA assays and 5-day CARB assay,
and was close to significance (P = 0.06) in the 4-day MDA experiment
(Table 2). All the VIFs and condition indexes in Model C were smaller
than 1.2 indicating no multicollinearity. All statistical model assump-
tions (normality, constant variance, linearity) weremet via checking re-
sidual plots and scatterplots. Also, there were no outliers that heavily
influenced the regression fit.
The results of the regression coefficients of Model B strongly support-
ed the predictions (Table 2). First, the coefficient of SE was much larger
than that ofME, i.e., β2Nβ1, (N20-fold, 109-fold, and 80-fold in the 4-, 5-
, and 6-day experiments, respectively), indicating that SE had the highest
correlation with Damage after accounting for the other variables (i.e., SE
was more influential than ME). Second, the ratio β1=β2 ¼ ð1−εÞ=εgave
similar estimates for ε, 0.989, 0.991 and 0.962 and in 6-, 5-, and 4-day ex-
periments, respectively, which are remarkably close to the predicted
value 0.99. Third, and more importantly, the P-values of ME were 0.29,
0.1, and 0.52 for 6-, 5-, and 4-day experiments respectively, indicating
its insignificant effect on Damage level, whereas the P-values of SE were
smaller than 0.001 and 0.038 in the 6-day MDA and 5-day CARB experi-
ments respectively, and smaller than 0.06 in the 4-dayMDA experiments.

The lower and upper bound of the parameter Em, 143 and 212 J/g,
gave slightly different results in the secondmodel (Model B). The statis-
tical parameters, i.e., the R-, P-, and t-values, and coefficient of ME (β1)
kept the same as in Table 2. The coefficient of SE and the repair efficiency
became smaller for the upper bound, and larger for the lower bound. For
the upper bound of Em (212 J/g), β2 = 25.89 (6-day) and 7.89 (4-day)
from the MDA assays, β2 = 0.0865 from the 5-day CARB assays , and
the repair efficiency ε = 0.986 (6-day), 0.988 (5-day), and 0.952 (4-
day). For the lower bound of Em (143 J/g), β2 = 38.22 (6-day) and
11.70 (4-day) from the MDA assay, and β2 = 0.128 for the 5-day
CARB assay, and ε = 0.990 (6-day), 0.992 (5-day), and 0.967 (4-day).

Finally, we estimated the effects of measurement errors in ME. The
standarddeviation of themeasurement errorwas 17%of themean values.
Using this percentage value, we obtained the size of the measurement
error standard deviation (σu) of ME in the 6-day experiment, 338.3 J.
The regression coefficient estimates after fitting Model B with measure-
ment error inMEwere very similar to the initialModel B (Table 2). Taking
the 6-day experiment as an example, the repair efficiency, ε, estimated
from the coefficients in Model B with the measurement error is 0.988,
slightly smaller than the ones estimated without the measurement
error, but still remarkably close to the predicted value, 0.99.

4. Discussion

The results of this study shed new light on the oxidative stress hy-
pothesis of aging, which recently has been seriously questioned, and
even considered dead by some authors (e.g., (Pérez et al., 2009)). As
we explained in a previous publication (Hou and Amunugama, 2015),
many questions against this hypothesis stem from a common misun-
derstanding that this hypothesis assumes proportional relationships be-
tween the rates of metabolism (oxygen consumption), production
reactive oxygen species, and cellular damage and longevity. In fact, ox-
idative stress hypothesis of aging only assumes a direct link between
cellular damage and lifespan. In Assumption 1 of our model, we as-
sumed a proportional relationship betweenROS production and oxygen
consumption rate (metabolic rate). However, there exists a natural leak
of proton across themitochondrial innermembrane. The fraction of res-
piration that drives the proton-leak is not involved in ROS production.
Thus, the proton leak may cause disproportionality between ROS pro-
duction and metabolic rate (Brand, 2000). Moreover, due to a series of
factors under certain conditions, even after taking consideration of pro-
ton-leak, the net ROS level may still not be proportional to non-proton-
leak dependent oxygen consumption (Barja, 2007; Barja, 2013; Hulbert
et al., 2007). Here we make three points to address this issue.

First, some evidence (Salin et al., 2015; Speakman et al., 2004) has
shown that under certain conditions, ROS production can be
disproportionally low for a given oxygen consumption rate, probably
due to high proton leak. In the context of our model, the low-ROS pro-
duction due to proton leak means a low damage coefficient, δ.
(Assumption 1: ROS/damage production, H = δ × B. coefficient δ is
low, ifH is low for a given B due to proton leak.) Recalling that repair ef-
ficiency is ε= η/δ, a lower δmeans a higher ε. Now, it comes back to the
main point of this paper: if the repair efficiency ε is high, then the
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damage will be insensitive to metabolic rate, because the contribution
of metabolic energy to damage is (1−ε) × B(Eq. (1)), and when ε is
high, no matter how B changes, this term is close to zero.

Second, the main purpose of our model is to disentangle the effects
of growth and the metabolic rate that fuels growth. The oxygen con-
sumption that drives the proton leak does not produce ATP (energy),
so it is not entangledwith growth, and it is not even included in our en-
ergy partition equation. The major prediction of our model is that, even
after taking consideration of proton-leak, the variation in proton-leak-
independent metabolic rate is still not the major cause of the variation
in cellular damage, opposite of the conventional thinking. Non-constant
percentage of respiration that drives mitochondrial proton leak can
cause variation in metabolic rate, but not all the variations in metabolic
rate can be attributed to the variation in proton-leak. A series of envi-
ronmental and physiological factors can alter metabolic rate without
changing the percentage of proton leak. In this study, the variation in
metabolic rate is mainly induced by food supplies. So, we assume that
in this study even if there is a variation in proton leak across individual
larvae, the observed variation in metabolic rate induced by this factor is
negligible, compared to that induced by food supply.

Third, andmore importantly, even after taking consideration of pro-
ton-leak, the net ROS level may still not be proportional to the proton-
leak independent respiration. One of the major reasons of the
disproportionalities is that many environmental or genetic factors can
induce reshuffling in energy budget, retard (or accelerate) biosynthesis,
and channel extra energy to (or away from) ROS scavenging and dam-
age repair (Hou and Amunugama, 2015). One typical example is the
low ROS level under diet restriction. Our model suggests that the highly
efficient repairmechanisms scavengemost of the free radicals produced
by oxidativemetabolism and the consequent cellular oxidative damage,
if energy required for scavenging and repair is sufficient. As we
discussed previously in (Hou, 2013), the diet restriction-induced low
ROS level may be attributed to the enhanced energy supply to mainte-
nance. While mildly reducing or having no effect on metabolic rate,
diet restriction largely suppresses growth, and channels more energy
from biosynthesis to maintenance (scavenging). This is exactly the
main point of this paper—biosynthesis rate has a larger impact on ROS
damage than metabolic rate does. Indeed, reduction of growth plays a
very important role in diet restriction's effect on lifespan extension.
Hou (2013) has analyzed the empirical data from N200 studies of food
restriction on small rodents, and found that growth reduction explains
86% of the lifespan extension by diet restriction.

Below we discuss a few pieces of indirect empirical evidence that
supports our model.

Recently Salin et al. (2015) have shown that within a population of
brown trout of same age and under identical environment, individuals
with higher mass-independent metabolic rate have lower levels of
ROS (H2O2). Although the proton-leak cannot be excluded as a cause
for this negative correlation, the authors suggested that “it is feasible
that individuals with a lower H2O2 level may have allocated more re-
sources towards antioxidant defences.” Noticing the fact that body
mass of the fish at the same age ranged from 5.05 to 13.95 g, it is possi-
ble that the large variation in biosynthesis (growth) caused variation in
the effort of ROS scavenging. I.e., individuals with smaller body size at
the same age had spent less energy on biosynthesis, allocated more en-
ergy to scavenge H2O2, and therefore had low H2O2 level despite high
metabolic rate.

Another line of indirect evidence comes from the studies that exper-
imentally elevated metabolic rate, but failed to change growth rate, and
had no harmful effect on health or lifespan. For example, Selman et al.
(2008) exposed voles to lifelong coldness, which elevated their meta-
bolic rate by almost 100%, but had minor effect on growth rate. The
cold exposed group and the control reached the same body mass at
20-month old. The authors found “no treatment effect on cumulative
mortality risk” and negligible effects on DNA oxidative damage, lipid
peroxidation, and antioxidant protection. Similarly, moderate exercises
increase energy expenditure, but have no effect lifespan (Holloszy,
1997), or in some cases even increase lifespan (Holloszy, 1993;
Navarro et al., 2004). In our Eq. (1), D = (1−ε) × ME + ε × SE, the
changes in damage induced by a large increase in metabolic energy
(ME) can be offset by a slight decrease in SE (growth), because the coef-
ficient of ME is much smaller than that of SE, i.e., 1−εb bε.

However, in some studies of cold exposure or mild exercise, growth
seems unchanged, whileME largely increases. So, in these cases our Eq.
(1) predicts a net increase in damage,which contradictswith the empir-
ical results. We suggest that the key to understanding the contradiction
still lies in the high efficiency. When animals are under stress, some re-
pair and protection-related gene expression can be up-regulated, a phe-
nomenon known as hormesis (Masoro, 2005; Rattan, 2004; Ristow and
Zarse, 2010). It has been hypothesized that cold exposure and mild ex-
ercise can induce such a hormetic effect (Rattan, 2004). The effect may
alter the structure of the macro-molecules and make them more resis-
tant to oxidative insults. In the context of our model, this means that
the coefficient, δ, (the amount of mass caused by one unit of metabolic
energy), is reduced by the hormetic effects. Moreover, during exercises
themitochondrial ROS production rate becomes lowerwhenmitochon-
dria transits from resting respiring state 4 to state 3 (the active phos-
phorylating respiration) (Barja, 2007), and this transition will also
reduce δ. The mild stresses may also enhance the efficiency of repair
or ROS scavenging, and increase the value of η. Recalling that the repair
efficiency ε = η/(δf), the reduced δ and increased η will increase ε.

The increase in ε induced by mild stress does not have to be large to
offset the effect of increasedmetabolic rate. Herewe give an approximate
estimate to show this point. Using the physiological data of a typical rat as
an example (Brrest(watts) = 3.4 × m3/4, M = 500 g (Peters, 1983)), the
total resting metabolic energy spent by a rat from birth to the age of

200 days is about ∫200 d
0 B0mðtÞ3=4dt≈34000 Kilojoules. The energy spent

on bio-tissue synthesis from birth (~5 g) to the age of 200 days is about
3000 Kilojoules(Moses et al., 2008). Taking the value of ε = 0.998 for
rat previously estimated in (Hou, 2013), the damage calculated by Eq.
(1) is about (1−ε) × ME + ε × SE ≈ 3060KJ. Now, we assume that
under mild stress, metabolic energy, ME increases 100%, from 34,000 to
68,000 KJ, while SE keeps unchanged. It is straightforward to see from
Eq. (1) that an increase in ε from 0.998 to 0.999 is sufficient to offset the
large increase inME, and keep the damage level unchanged.

We need to emphasize that efficiency ε is high and robust as the re-
sult of natural selection (Sohal et al., 2002). Not all the low dose stresses
can induce hormetic effects and further increase it (Masoro, 2005).
However, growth rate, on the other hand, is muchmore plastic. A series
of environmental factors, such as food supply, can change it, and there-
fore change the damage in Eq. (1). Thus, many interventions, such as
food restriction, extend lifespan by changing growth rate and inducing
energy reshuffling between biosynthesis and maintenance.

During growth, both metabolic and biosynthetic rate vary constant-
ly. A variety of genetic, environmental and physiological factors may
cause independent or even opposite changes in these two rates. Since
metabolic and biosynthetic rate may vary independently, their impacts
on cellular damage may be different too. However, most studies on ox-
idative damage have only investigated the collective results of the con-
certed effects of these two rates. Our study offers a departure point for
better understandings of their relative effects on cellular damage. This
study also provides a theoretical framework for estimating how genetic,
environmental, and physiological factors influence children's health
during growth.
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