Nonlinear Optimization in Machine Learning Lecture 1 Introduction \& Foundations Why nonlinear optimization? motivated by Machine Learning Applications

$$
\theta=\left\{\left(a_{j}, y_{j}\right), \quad \jmath=1,2, \ldots, m\right\}
$$

"learn" $\phi=\phi(a ; x)$
"loss" $\mathcal{L}_{D}(x)=\sum_{j=1}^{m} \mathscr{L}\left(a_{j}, y_{j} ; x\right)$

$$
=\sum_{j=1}^{m} l\left(\phi\left(a_{j} ; x\right), y_{j}\right)
$$

$$
x^{*}=\min _{x \in U} \mathscr{L}_{D}(x)
$$

Example 1 least Squares

$$
\min _{x} \frac{1}{2 m} \sum_{j=1}^{m}\left(a_{j}^{\top} x-y_{j}\right)^{2}=\frac{1}{2 m}\|A x-y\|_{2}^{2}
$$

"regularization"

$$
\min _{x} \frac{1}{2 m}\|A x-y\|_{2}^{2}+\lambda\|x\|_{2}^{2} \quad(\lambda>0)
$$

(Tikhonov regularization)

$$
\min _{x} \frac{1}{2 m}\|A x-y\|_{2}^{2}+\lambda\|x\|_{1}
$$

(LASSO: Shrinkage and
Example 2 Matrix Completion Selection operator;
A_{j} is nxp and X is $n \times p$

$$
\min _{x} \frac{1}{2 m} \sum_{j=1}^{m}\left(\left\langle A_{j}, x\right\rangle-y_{j}\right)^{2}
$$

where $\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right)$

$$
\begin{aligned}
\|x\|_{*} & =\text { sum of } \mid \text { singular values| of } x=\operatorname{tr} \sqrt{x^{\top} x} \\
& =\text { nuclear norm }
\end{aligned}
$$

$$
\begin{aligned}
& L \in \mathbb{R}^{n \times r} \text { and } R \in \mathbb{R}^{p \times r} \quad r \ll \operatorname{mon}(n, p ; \\
& \min _{L, R} \frac{1}{2 m} \sum_{j=1}^{m}\left(\left\langle A_{j}, L R^{\top}\right\rangle-y_{j}\right)^{2}
\end{aligned}
$$

Example 3 Nonnegative matrix factorization

$$
\begin{array}{ll}
& \left\|L R^{T}-Y\right\|_{F}^{2}, L \geqslant 0, R \geqslant 0 \\
Y \in R & L \in \mathbb{R}^{n \times r} \quad R \in \mathbb{R}^{n \times r} \\
&
\end{array}
$$

Example 4 Sparse inverse covariance estimation
Sample covariance matrix $S=\frac{1}{m-1} \sum_{j=1}^{m} a_{j} a_{j}{ }^{\top}$

$$
s^{-1}=X
$$

min

$$
\langle s, x\rangle-\log \operatorname{det}|x|+\lambda\|x\|_{1}
$$

$x \in$ Symmetric $\mathbb{R}^{n x n}$
"Graphical LAsso"

$$
\begin{gathered}
x \geq 0 \\
\|x\|_{1}=\sum_{i, l=1}^{n}\left|x_{i l}\right|
\end{gathered}
$$

Example 5 Sparse PCA
$P C A=$ Princople component analysis

$$
\max _{v \in \mathbb{R}^{n}} v^{\top} S v \text { sit }\|v\|_{2}=1,\|v\|_{0} \leq k
$$

"Sparse" via $R \quad M=U U T$

$$
\max \quad\langle S, M\rangle \quad \text { sot. } M \succeq 0,\langle I, M\rangle=1
$$

$$
M \in \text { Symmetric } \mathbb{R}^{n \times n} \quad,\|M\|_{1} \leq R
$$

Example 6 SVM (Support Vector Machine)

$$
a_{j} \in \mathbb{R}^{n} \quad y_{j} \in\{-1,1\}
$$

seek $x \in \mathbb{R}^{n}, \quad \beta \in \mathbb{R}$ sit. $a_{j}^{\top} x-\beta \geqslant 1$ if $y_{j}=$

$$
a_{j}^{\top} x-\beta \leq-1 \text { if } y_{j}=-
$$

$$
H(x, \beta)=\frac{1}{m} \sum_{j=1}^{m} \max \left(1-y_{j}\left(a_{j}^{\top} x-\beta\right), 0\right)
$$

Example 7 Neural Network
"activation function" v

$$
\begin{aligned}
& \text { etivation function } \\
& a_{j}^{l}=v\left(W^{l} a_{j}^{l-1}+g^{l}\right), l=1,2, \ldots, D
\end{aligned}
$$

"weight" $\omega=\left(w^{\prime}, g^{\prime}, w^{2}, g^{2}, \ldots, w^{D}, g^{D)}\right.$

$$
\begin{aligned}
& L(w, x)=\frac{1}{m} \sum_{j=1}^{m}\left[\sum_{l=1}^{M} y_{j l}\left(x_{[\ell]}^{\top} a_{j}^{D}(\omega)\right)\right. \\
&\left.-\log \left(\sum_{l=1}^{M} \exp \left(x[l] a_{j}^{D}(\omega)\right)\right)\right]
\end{aligned}
$$

"Logistic regression"
Fundations of Optimization

$$
f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

"local minimier" "global momozer"
"strict local minimizer"
"isolated local minimizer"

Constrained Optimization Problem

$$
\min _{x \in \Omega} f(x)
$$

where $\Omega \subset D \subset \mathbb{R}^{n}$ is a closed set "Local solution" "global solution" " relation with uneonstrainal $\min f(x)+I_{\Omega}(x)$
Convexity
$x, y \in \Omega$
"convex set"

$$
\Rightarrow(1-\alpha) x+\alpha y \in \Omega \quad \forall \alpha \in[0,1]
$$

"Supporting hyperplane for Ω at $\bar{x} \in \Omega$ " is defined by $g \in \mathbb{R}^{n} \quad g \neq 0$ sit

$$
g^{\top}(x-\bar{x}) \leq 0 \quad \text { for all } \quad x \in \Omega
$$

Projection Operator $P: \mathbb{R}^{n} \rightarrow \Omega$

$$
P(y)=\arg \min _{z \in \Omega}\|z-y\|_{2}^{2}
$$

Convex function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

$$
\begin{aligned}
& \phi((1-\alpha) x+\alpha y) \leqslant(1-\alpha) \phi(x)+\alpha \phi(y) \\
& \forall x, y \in \mathbb{R}^{n}, \forall \alpha \in[0,1]
\end{aligned}
$$

"effective domain" $=\{x \in \Omega, \phi(x)<+\infty\}$

$$
\text { "epigraph" }=\text { epi } \phi:=\{(x, t) \in \Omega \times \mathbb{R}: t \geqslant \phi(x)\}
$$

"proper convex function"
"closed proper convex function"

Definition "Normal Cone"
$\Omega \subset \mathbb{R}^{n}$ is convex set
$N_{\Omega}(x)=$ normal cone at $\forall x \in \Omega$

$$
=\left\{d \in \mathbb{R}^{n}: \quad d^{\top}(y-x) \leqslant 0 \text { for all } y \in \Omega\right\}
$$

Theorem If $\Omega_{i}, i=1,2, \ldots, m$ are convex sets and $\Omega=\bigcap_{i=1,2, \ldots m} \Omega_{i}$, then $\forall x \in \Omega$

$$
N_{\Omega}(x) \supset N_{\Omega_{1}}(x)+N_{\Omega_{2}}(x)+\ldots+N_{\Omega_{m}}(x)
$$

For " " " in the above we need constraint qualifications: a linear approximation of the sets near the point in question needs to capture the essential geometry of the set itself in a neighborhood of the point.
Theorem If f is convex and Ω closed convex then for $\min _{x \in \Omega} f(x)$ we have
(a) any local solution is a global solution
(b) He set of global solutions form a convex set.

Important quantities
"modulus of contimity m for strongly convex ϕ " $m>0 \quad \forall x, y \in$ domain of ϕ

$$
\begin{equation*}
\phi((1-\alpha) x+\alpha y) \leq(1-\alpha) \phi(x)+\alpha \phi(y)-\frac{1}{2} m \alpha(1-\alpha)\|x-y\|_{2} \tag{*}
\end{equation*}
$$

Theorem (Taylor's formula)
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ continuously differentiable

$$
x, p \in \mathbb{R}^{n}
$$

$$
f(x+p)=f(x)+\int_{0}^{1} \nabla f\left(x+\gamma_{p}\right)^{\top} p d r
$$

$f(x+p)=f(x)+\nabla f\left(x+\gamma_{p}\right)^{\top} p$ for some $r \in(0,1$,
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ twice continuously differentiable

$$
\begin{aligned}
& f: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { twice } \nabla f(x+p)=\nabla f(x)+\int_{0}^{1} \nabla^{2} f(x+\gamma p) p d \gamma \\
& f(x+p)=f(x)+\nabla f(x){ }^{\top} p+\frac{1}{2} p^{\top} \nabla^{2} f(x+\gamma p) p
\end{aligned}
$$

for some $\quad v \in(0,1)$

Lipschitzeonstat L for Vf

$$
\|\nabla f(x)-\nabla f(y)\| \leqslant L\|x-y\| \quad(* *)
$$

for all $x, y \in \operatorname{com}(f)$

Theorem
(1) If f is continuously differentiable and conve then

$$
f(y) \geqslant f(x)+(\nabla f(x))^{\top}(y-x)
$$

for $\forall x, y \in \operatorname{dom}(f)$
(2) If f is differentiable and convex then

$$
f(y) \geqslant f(x)+(\nabla f(x))^{\top}(y-x)+\frac{m}{2}\|y-x\|^{2}
$$

for $\forall x, y \in \operatorname{dom}(f)$
(3) If ∇f is uniformly Lopschitz continuous with Lipschitz constant L and f is convex then

$$
\begin{array}{r}
f(y) \leqslant f(x)+(\nabla f(x))^{\top}(y-x)+\frac{L}{2}\|y-x\|^{2} \\
\text { for } \forall x, y \in \operatorname{dom}(f)
\end{array}
$$

for $\forall x, y \in \operatorname{clom}(f)$

Proof. (1) $\quad \partial f(x)=\{\nabla f(x)\}$

$$
\begin{gathered}
z \rightarrow x \quad f(z) \geqslant f(x)+(\nabla f(x))^{\top}(z-x) \\
\hat{\prime} \\
\alpha f(y)+(1-\alpha) f(x) \quad(0<\alpha<1)
\end{gathered}
$$

So $\quad \alpha f(y) \geqslant \alpha f(x)+(\nabla f(x))^{\top}(z-x)$

$$
\begin{array}{r}
\Rightarrow \quad f(y) \geqslant f(x)+(\nabla f(x))^{\top}\left(\frac{z-x}{\alpha}\right) \\
\left(y^{\prime \prime}-x\right)
\end{array}
$$

(2) follows (*)
(3) By Taylor expansion

$$
\begin{aligned}
& \text { (3) By Taylor expausion } \\
& f(y)-f(x)-(\nabla f(x))^{\top}(y-x)=\int_{0}^{1} \begin{array}{c}
{[\nabla f(x+\gamma(y-x))-\nabla f(x)]^{\top}} \\
(y-x) d \gamma
\end{array} \\
& \leq \int_{0}^{1}\|\nabla f(x+\gamma(y-x))-\nabla f(x)\| \cdot\|y-x\| d \gamma \\
& \leq \int_{0}^{1} L \gamma\|y-x\|^{2} d \gamma=\frac{L}{2}\|y-x\|^{2}
\end{aligned}
$$

Theorem $f \in C^{2}\left(\mathbb{R}^{n}\right)$
f is strongly convex with modulus of covexity m $\Leftrightarrow \nabla^{2} f(x) \succeq m I$ for all x
∇f is Lipschitz continuous with Lipschitz constant $L \Leftrightarrow \quad \nabla^{2} f(x) \underline{L} L$ for all x
Theorem If f is differentiable and strongly convex with module of contionty m Then minimizer x^{*} of f exists and is unique.
Key to the proof (1). $\left\{x \mid f(x) \leq f\left(x^{0}\right)\right\}$ for any x^{0} is colored and bouneled
(2) x^{*} is unique.

Theorem f is convex, If with Lopschotz constant L then $\forall x, y \in \operatorname{dan}(f)$

$$
\begin{aligned}
& f(x)+(\nabla f(x))^{\top}(y-x)+\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|^{2} \leq f(y) \\
& \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|^{2} \leq(\nabla f(x)-\nabla f(y))^{\top}(x-y) \leq L \| x-y
\end{aligned}
$$

If in addition f is strongly convex and with modulus of convexity m, unique minimizer x^{*} then

$$
f(y)-f(x) \geqslant-\frac{1}{2 m}\|\nabla f(x)\|^{2}
$$

$\forall x, y \in \operatorname{dom}(f)$
Proof. Define $\phi(y)=f(y)-(\nabla f(x))^{\top} y$
ϕ is convex $\quad \nabla \phi(y)=\nabla f(y)-\nabla f(x)$

$$
\nabla \phi(x)=\nabla f(x)-\nabla f(x)=0
$$

so x is a minimizer of ϕ
so $\phi(x) \leqslant \phi\left(y-\frac{1}{L} \nabla \phi(y)\right)$

$$
\leqslant \phi(y)+(\nabla \phi(y))^{\top}\left[-\frac{1}{L} \nabla \phi(y)\right]+\frac{L}{2}\left\|\left(-\frac{1}{L}\right) \nabla \phi(y)\right\|
$$

$$
=\phi(y)-\frac{1}{2 L}\|\nabla \phi(y)\|^{2}
$$

So

$$
\begin{aligned}
& f(x)-(\nabla f(x))^{\top} x \\
\leqslant & f(y)-(\nabla f(x))^{T} y-\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|^{2}
\end{aligned}
$$

i.e. $\left\|f(y) \geqslant f(x)+(\nabla f(x))^{\top}(y-x)+\frac{1}{2 L}\right\| \nabla f(y)-\nabla f(x) \|$
same way $f(x) \geqslant f(y)+(\nabla f(y))^{\top}(x-y)+\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|$

$$
\Rightarrow \quad\left[(\nabla f(x))^{\top}-(\nabla f(y))^{\top}\right](x-y) \geqslant \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|
$$

Finally by (*)

$$
\begin{aligned}
f(y)-f(x) & \geqslant(\nabla f(x))^{\top}(y-x)+\frac{m}{2}\|y-x\|^{2} \\
= & \frac{1}{2 m}\|\nabla f(x)\|^{2}+(\nabla f(x))^{\top}(y-x)+\frac{m}{2}\|y-x\|^{2} \\
& \quad-\frac{1}{2 m}\|\nabla f(x)\|^{2} \\
= & \frac{m}{2}\left\|y-x+\frac{1}{m} \nabla f(x)\right\|^{2}-\frac{1}{2 m}\|\nabla f(x)\|^{2} \\
& \geqslant-\frac{1}{2 m}\|\nabla f(x)\|^{2}
\end{aligned}
$$

$$
\|\nabla f(x)\|^{2} \geqslant 2 m\left[f(x)-f^{*}\right], m>0
$$

"generalized strong convexity condition"
"quadratic surrogate"

$$
f(x)-f\left(x^{*}\right)=\frac{1}{2}\left(x-x^{*}\right)^{\top} \nabla^{2} f\left(x^{*}\right)\left(x-x^{*}\right)+\frac{0\left(\left\|x-x^{*}\right\|\right)}{\text { "quadratic surregace }}
$$

Optimality conditions for smooth unconstrained problem:
Theorem (Necessary Conditions for Smooth unconstramen optimization)
(a). f is continuously differentiable, x^{*}-local minimizer of $\min _{x \in \mathbb{R}^{n}} f(x)$ then $\nabla f\left(x^{*}\right)=0$ Minimizer of $\min _{x \in \mathbb{R}^{n}} f(x)$ then $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semidefinite (second-order necessary condition)

When f is convex, first-order necessary condition become sufficient
Theorem f is continuously differentiable and convex $\nabla f\left(x^{*}\right)=0 \Rightarrow x^{*}$ is global minimizer of

$$
\operatorname{win}_{x \in \mathbb{R}^{n}} f(x)
$$

f is strongly convex $\Rightarrow x^{*}$ is unique

$$
\text { Key } f(y) \geqslant f\left(x^{*}\right)+\left(\nabla f\left(x^{*}\right)\right)^{\top}\left(y-x^{*}\right)
$$

$$
=f\left(x^{*}\right)
$$

When f is non-convex
Theorem (Second-order sufficient condition) If f is trice continuously differentiable and that for some x^{*} we have $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite
Then x^{*} is a strict local minimizer of $\min _{x \in \mathbb{R}} f(x)$

Optimizality conditions for smooth constrained problem $=$ nonsmooth problems

$$
\min _{x \in \mathbb{R}^{n}}\left[f(x)+I_{\Omega}(x)\right]
$$

Theorem Let Ω be closed and convex in \mathbb{R}^{\prime} Let f be convex and differentiable x^{*} is a minimizer of $\min _{x \in \mathbb{R}^{n}}\left[f(x)+I_{\Omega^{\prime}}(x)\right]$

$$
\Leftrightarrow \quad-\nabla f\left(x^{*}\right) \in N_{\Omega}\left(x^{*}\right)
$$

$$
\partial I_{\Omega}\left(x^{*}\right)=N_{\Omega}\left(x^{*}\right) \text { (key) }
$$

$$
\forall d \in \partial I_{\Omega}\left(x^{*}\right) \quad x^{*} \in \Omega
$$

$$
I_{\Omega}(x) \geqslant I_{\Omega}\left(x^{*}\right)+d^{\top}\left(x-x^{*}\right)
$$

so $\quad d^{\top}\left(x-x^{*}\right) \leq 0$ of $x, x^{*} \in \Omega$

