On the fast convergence of random perturbations of the gradient flow.

Wenqing Hu. ¹
(Joint work with Chris Junchi Li².)

¹. Department of Mathematics and Statistics, Missouri S&T.
We target at finding a local minimum point x^* of the expectation function $F(x) \equiv \mathbb{E}[F(x; \zeta)]$:

$$x^* = \arg \min_{x \in \mathbb{R}^d} \mathbb{E}[F(x; \zeta)].$$

Index random variable ζ follows some prescribed distribution \mathcal{D}.

We consider a general nonconvex stochastic loss function $F(x; \zeta)$ that is twice differentiable with respect to x. Together with some additional regularity assumptions we guarantee that $\nabla \mathbb{E}[F(x; \zeta)] = \mathbb{E}[\nabla F(x; \zeta)]$.

3. Such as control of the growth of the gradient in expectation.
Stochastic Gradient Descent Algorithm.

- Gradient Descent (GD) has iteration:
 \[x^{(t)} = x^{(t-1)} - \eta \mathbb{E}[\nabla F(x^{(t-1)}; \zeta)] \, . \]

- Stochastic Gradient Descent (SGD) has iteration:
 \[x^{(t)} = x^{(t-1)} - \eta \nabla F(x^{(t-1)}; \zeta_t) \, , \]

where \(\{\zeta_t\} \) are i.i.d. random variables that have the same distribution as \(\zeta \sim D \).
Machine Learning Background: DNN.

- Deep Neural Network (DNN). Goal is to solve the following stochastic optimization problem

\[
\min_{x \in \mathbb{R}^d} f(x) \equiv \frac{1}{M} \sum_{i=1}^{M} f_i(x)
\]

where each component \(f_i \) corresponds to the loss function for data point \(i \in \{1, \ldots, M\} \), and \(x \) is the vector of weights being optimized.
Let B be the minibatch of prescribed size uniformly sampled from $\{1, \ldots, M\}$, then the objective function can be further written as the expectation of a stochastic function

$$
\frac{1}{M} \sum_{i=1}^{M} f_i(x) = E_B \left(\frac{1}{|B|} \sum_{x \in B} f_i(x) \right).
$$

SGD updates as

$$
x(t) = x(t-1) - \eta \left(\frac{1}{|B_t|} \sum_{i \in B_t} \nabla f_i(x(t-1)) \right),
$$

which is the classical mini–batch version of the SGD.
Online learning via SGD: standard sequential predicting problem where for \(i = 1, 2, \ldots \)
1. An unlabeled example \(a_i \) arrives;
2. We make a prediction \(\hat{b}_i \) based on the current weights \(x_i = [x_i^1, \ldots, x_i^d] \in \mathbb{R}^d \);
3. We observe \(b_i \), let \(\zeta_i = (a_i, b_i) \), and incur some known loss \(L(x_i, \zeta_i) \) which is convex in \(x_i \);
4. We update weights according to some rule \(x_{i+1} \leftarrow f(x_i) \).

SGD rule:
\[
f(x_i) = x_i - \eta \nabla_1 L(x_i, \zeta_i),
\]
where \(\nabla_1 L(u, v) \) is a subgradient of \(L(u, v) \) with respect to the first variable \(u \), and the parameter \(\eta > 0 \) is often referred as the *learning rate.*
Closer look at SGD.

- SGD:
 \[x^{(t)} = x^{(t-1)} - \eta \nabla F(x^{(t-1)}; \zeta_t) . \]

- Set \(F(x) = \mathbb{E}_{\zeta \sim \mathcal{D}} F(x; \zeta) . \)

- Let
 \[e_t = \nabla F(x^{(t-1)}; \zeta_t) - \nabla F(x^{(t-1)}) \]
 and we can rewrite the SGD as
 \[x^{(t)} = x^{(t-1)} - \eta (\nabla F(x^{(t-1)}) + e_t) . \]
Local statistical characteristics of SGD path.

- In a difference form it looks like

\[x(t) - x(t-1) = -\eta \nabla F(x(t-1)) - \eta e_t . \]

- We see that

\[\mathbb{E}(x(t) - x(t-1) | x(t-1)) = -\eta \nabla F(x(t-1)) \]

and

\[[\text{Cov}(x(t) - x(t-1) | x(t-1))]^{1/2} = \eta [\text{Cov}(\nabla F(x(t-1); \zeta))]^{1/2} . \]
SGD approximating diffusion process.

- Very roughly speaking, we can approximate $x(t)$ by a diffusion process X_t driven by the stochastic differential equation

$$dX_t = -\eta \nabla F(X_t)dt + \eta \sigma(X_t)dW_t, \quad X_0 = x^{(0)},$$

where $\sigma(x) = [\text{Cov}(\nabla F(x; \zeta))]^{1/2}$ and W_t is a standard Brownian motion in \mathbb{R}^d.

- Slogan: Continuous Markov processes are characterized by its local statistical characteristics only in the first and second moments (conditional mean and (co)variance).
Diffusion Approximation of SGD: Justification.

Such an approximation has been justified in the weak sense in many classical literature4 5 6.

It can also be thought of as a normal deviation result.

One can call the continuous process X_t as the “continuous SGD”7.

I will come back to this topic by the end of the talk.

SGD approximating diffusion process: convergence time.

- Recall that we have set $F(x) = E F(x; \zeta)$.
- Thus we can formulate the original optimization problem as

\[x^* = \arg \min_{x \in U} F(x). \]

- Instead of SGD, in this work let us consider its approximating diffusion process

\[
dX_t = -\eta \nabla F(X_t) dt + \eta \sigma(X_t) dW_t, \quad X_0 = x^{(0)}.
\]

- The dynamics of X_t is used as an alternative optimization procedure to find x^*.

- **Remark**: If there is no noise, then

\[
dX_t = -\eta \nabla F(X_t) dt, \quad X_0 = x^{(0)}
\]

is just the gradient flow $S^t x^{(0)}$. Thus it approaches x^* in the strictly convex case.
SGD approximating diffusion process: convergence time.

- Hitting time

$$\tau^n = \inf \{ t \geq 0 : F(X_t) \leq F(x^*) + e \}$$

for some small $e > 0$.

- Asymptotic of $E\tau^n$ as $\eta \to 0$?
SGD approximating diffusion process: convergence time.

- Approximating diffusion process

 \[dX_t = -\eta \nabla F(X_t) dt + \eta \sigma(X_t) dW_t , \quad X_0 = x^{(0)} . \]

- Let \(Y_t = X_t / \eta \), then

 \[dY_t = -\nabla F(Y_t) dt + \sqrt{\eta} \sigma(Y_t) dW_t , \quad Y_0 = x^{(0)} . \]

 (Random perturbations of the gradient flow!)

- Hitting time

 \[T^\eta = \inf \{ t \geq 0 : F(Y_t) \leq F(x^*) + e \} \]

 for some small \(e > 0 \).

- \[\tau^\eta = \eta^{-1} T^\eta . \]
Random perturbations of the gradient flow: convergence time.

Let $Y_t = X_t/\eta$, then

$$dY_t = -\nabla F(Y_t) dt + \sqrt{\eta} \sigma(Y_t) dW_t, \ Y_0 = x^{(0)}.$$

Hitting time

$$T^\eta = \inf\{t \geq 0 : F(Y_t) \leq F(x^*) + e\}$$

for some small $e > 0$.

Asymptotic of $\mathbf{E} T^\eta$ as $\eta \to 0$?
Where is the difficulty?

Figure 1: Various critical points and the landscape of F.

Figure 1: Various critical points and the landscape of F.

Where is the difficulty?

Figure 2: Higher order critical points.
Strict saddle property.

Definition (strict saddle property)

Given fixed $\gamma_1 > 0$ and $\gamma_2 > 0$, we say a Morse function F defined on \mathbb{R}^n satisfies the “strict saddle property” if each point $x \in \mathbb{R}^n$ belongs to one of the following: (i) $|\nabla F(x)| \geq \gamma_2 > 0$; (ii) $|\nabla F(x)| < \gamma_2$ and $\lambda_{\min}(\nabla^2 F(x)) \leq -\gamma_1 < 0$; (iii) $|\nabla F(x)| < \gamma_2$ and $\lambda_{\min}(\nabla^2 F(x)) \geq \gamma_1 > 0$.

Strict saddle property.

Figure 3: Types of local landscape geometry with only strict saddles.
Strong saddle property.

- **Definition (strong saddle property)**

 Let the Morse function $F(\bullet)$ satisfy the strict saddle property with parameters $\gamma_1 > 0$ and $\gamma_2 > 0$. We say the Morse function $F(\bullet)$ satisfy the “strong saddle property” if for some $\gamma_3 > 0$ and any $x \in \mathbb{R}^n$ such that $\nabla F(x) = 0$, all eigenvalues $\lambda_i, i = 1, 2, \ldots, n$ of the Hessian $\nabla^2 F(x)$ at x satisfying (ii) in Definition 1 are bounded away from zero by some $\gamma_3 > 0$ in absolute value, i.e., $|\lambda_i| \geq \gamma_3 > 0$ for any $1 \leq i \leq n$.
Escape from saddle points.

Figure 4: Escape from a strong saddle point.
Escape from saddle points: behavior of process near one specific saddle.

- The problem was first studied by Kifer in 1981\(^\text{10}\).
- Recall that
 \[
 dY_t = -\nabla F(Y_t)dt + \sqrt{\eta}\sigma(Y_t)dW_t, \quad Y_0 = x^{(0)},
 \]
is a random perturbation of the gradient flow. Kifer needs to assume further that the diffusion matrix
 \[\sigma(\bullet)\sigma^T(\bullet) = \text{Cov}(\nabla F(\bullet; \zeta))\]
is strictly uniformly positive definite.
- Roughly speaking, Kifer’s result states that the exit from a neighborhood of a strong saddle point happens along the “most unstable” direction for the Hessian matrix, and the exit time is asymptotically \(\sim C \log(\eta^{-1})\)

Escape from saddle points: behavior of process near one specific saddle.

Figure 5: Escape from a strong saddle point: Kifer’s result.
Escape from saddle points: behavior of process near one specific saddle.

- $G \cup \partial G = 0 \cup A_1 \cup A_2 \cup A_3$.
- If $x \in A_2 \cup A_3$, then for the deterministic gradient flow there is a finite
 \[t(x) = \inf\{ t > 0 : S^t x \in \partial G \} . \]
- In this case as $\eta \to 0$, expected first exit time converges to $t(x)$, and first exit position converges to $S^{t(x)} x$.
- Remind that the gradient flow $S^t x(0)$ is
 \[dX_t = -\eta \nabla F(X_t) dt , \quad X_0 = x(0) . \]
Escape from saddle points: behavior of process near one specific saddle.

Figure 6: Escape from a strong saddle point: Kifer’s result.
Escape from saddle points: behavior of process near one specific saddle.

- If \(x \in (0 \cup A_1) \setminus \partial G \), situation is more interesting.
- First exit occurs along the direction pointed out by the most negative eigenvalue(s) of the Hessian \(\nabla^2 F(0) \).
- \(\nabla^2 F(0) \) has spectrum \(-\lambda_1 = -\lambda_2 = \ldots = -\lambda_q < -\lambda_{q+1} \leq \ldots \leq -\lambda_p < 0 < \lambda_{p+1} \leq \ldots \leq \lambda_d\).
- Exit time will be asymptotically \(\frac{1}{2\lambda_1} \ln(\eta^{-1}) \) as \(\eta \to 0 \).
- Exit position will converge (in probability) to the intersection of \(\partial G \) with the invariant manifold corresponding to \(-\lambda_1, \ldots, -\lambda_q\).
- **Slogan**: when the process \(Y_t \) comes close to 0, it will “choose” the most unstable directions and move along them.
Escape from saddle points: behavior of process near one specific saddle.

Figure 7: Escape from a strong saddle point: Kifer’s result.
More technical aspects of Kifer’s result...

- In Kifer’s result all convergence are point–wise with respect to initial point x. They are not uniform convergence when $\eta \to 0$ with respect to all initial point x.
- The “exit along most unstable directions” happens only when initial point x strictly stands on A_1.
- Does not allow small perturbations with respect to initial point x. Run into messy calculations...
Why these technicalities matter?

- Our landscape may have a “chain of saddles”.
- Recall that

\[dY_t = -\nabla F(Y_t)dt + \sqrt{\eta} \sigma(Y_t) dW_t, \quad Y_0 = x^{(0)} \]

is a random perturbation of the gradient flow.
Global landscape: chain of saddle points.

Figure 8: Chain of saddle points.
Linerization of the gradient flow near a strong saddle point.

- **Hartman–Grobman Theorem**: for any strong saddle point O that we consider, there exist an open neighborhood U of O and a $C^{(0)}$ homeomorphism $h : U \to \mathbb{R}^d$ such that the gradient flow under h is mapped into a linear flow.

- **Linearization Assumption**\(^{11}\): The homeomorphism h provided by the Hartman–Grobman theorem can be taken to be $C^{(2)}$.

- A sufficient condition for the validity of the $C^{(2)}$ linerization assumption is the so called **non–resonance condition** (Sternberg linerization theorem).

- I will also come back to this topic at the end of the talk.

Linerization of the gradient flow near a strong saddle point.

Figure 9: Linerization of the gradient flow near a strong saddle point.
Uniform version of Kifer’s exit asymptotic.

- Let $U \subset G$ be an open neighborhood of the saddle point O. Set initial point $x \in U \cup \partial U$.
- Set $\text{dist}(U \cup \partial U, \partial G) > 0$. Let $t(x) = \inf\{t > 0 : S^t x \in \partial G\}$.
- W_{max} is the invariant manifold corresponding to the most negative eigenvalues $-\lambda_1, \ldots, -\lambda_q$ of $\nabla^2 F(O)$.
- Define $Q_{\text{max}} = W_{\text{max}} \cap \partial G$.
- Set

$$\partial G_{U \cup \partial U \rightarrow \text{out}} = \{S^t(x) \text{ for some } x \in U \cup \partial U \text{ with finite } t(x)\} \cup Q_{\text{max}}$$

- For small $\mu > 0$ let

$$Q^\mu = \{x \in \partial G, \text{dist}(x, \partial G_{U \cup \partial U \rightarrow \text{out}}) < \mu\}$$

- τ^η_x is the first exit time to ∂G for the process Y_t starting from x.
Uniform version of Kifer’s exit asymptotic.

Figure 10: Uniform exit dynamics near a specific strong saddle point under the linearization assumption.
Uniform version of Kifer’s exit asymptotic.

Theorem

For any $r > 0$, there exist some $\eta_0 > 0$ so that for all $x \in U \cup \partial U$ and all $0 < \eta < \eta_0$ we have

$$\frac{E_x \tau_x^\eta}{\ln(\eta^{-1})} \leq \frac{1}{2\lambda_1} + r.$$

For any small $\mu > 0$ and any $\rho > 0$, there exist some $\eta_0 > 0$ so that for all $x \in U \cup \partial U$ and all $0 < \eta < \eta_0$ we have

$$P_x(Y_{\tau_x^\eta} \in Q^\mu) \geq 1 - \rho.$$
Convergence analysis in a basin containing a local minimum: Sequence of stopping times.

- To demonstrate our analysis, we will assume that x^* is a local minimum point of $F(\bullet)$ in the sense that for some open neighborhood $U(x^*)$ of x^* we have

$$x^* = \arg \min_{x \in U(x^*)} F(x).$$

- Assume that there are k strong saddle points O_1, \ldots, O_k in $U(x^*)$ such that $F(O_1) > F(O_2) > \ldots > F(O_k) > F(x^*)$.

- Start the process with initial point $Y_0 = x \in U(x^*)$.

- Hitting time

$$T^\eta = \inf\{t \geq 0 : F(Y_t) \leq F(x^*) + e\}$$

for some small $e > 0$.

- Asymptotic of $E T^\eta$ as $\eta \to 0$?
Convergence analysis in a basin containing a local minimum: Sequence of stopping times.

Figure 11: Sequence of stopping times.
Convergence analysis in a basin containing a local minimum: Sequence of stopping times.

- Standard Markov cycle type argument.
- But the geometry is a little different from the classical arguments for elliptic equilibriums found in Freidlin–Wentzell book12.
- \(\text{E} T^n \lesssim \frac{k}{2\gamma_1} \ln(\eta^{-1}) \) conditioned upon convergence.

SGD approximating diffusion process: convergence time.

- Recall that we have set \(F(x) = E F(x; \zeta) \).
- Thus we can formulate the original optimization problem as

\[
x^* = \arg \min_{x \in U(x^*)} F(x)
\]

- Instead of SGD, in this work let us consider its approximating diffusion process

\[
dX_t = -\eta \nabla F(X_t) dt + \eta \sigma(X_t) dW_t, \quad X_0 = x^{(0)}.
\]

- The dynamics of \(X_t \) is used as an alternative optimization procedure to find \(x^* \).
SGD approximating diffusion process: convergence time.

- Hitting time

\[\tau^n = \inf\{t \geq 0 : F(X_t) \leq F(x^*) + e\} \]

for some small \(e > 0 \).

- Asymptotic of \(E\tau^n \) as \(\eta \to 0 \)?
SGD approximating diffusion process: convergence time.

Approximating diffusion process

\[dX_t = -\eta \nabla F(X_t) dt + \eta \sigma(X_t) dW_t , \quad X_0 = x^{(0)}. \]

Let \(Y_t = X_t/\eta \), then

\[dY_t = -\nabla F(Y_t) dt + \sqrt{\eta} \sigma(Y_t) dW_t , \quad Y_0 = x^{(0)}. \]

(Random perturbations of the gradient flow!)

Hitting time

\[T^\eta = \inf\{ t \geq 0 : F(Y_t) \leq F(x^*) + e \} \]

for some small \(e > 0 \).

\[\tau^\eta = \eta^{-1} T^\eta . \]
Convergence analysis in a basin containing a local minimum.

- Theorem

 (i) For any small $\rho > 0$, with probability at least $1 - \rho$, SGD approximating diffusion process X_t converges to the minimizer x^* for sufficiently small β after passing through all k saddle points $O_1, ..., O_k$;

 (ii) Consider the stopping time τ^η. Then as $\eta \downarrow 0$, conditioned on the above convergence of SGD approximating diffusion process X_t, we have

 $$\lim_{\eta \to 0} \frac{\mathbb{E}_{\tau^\eta}}{\eta^{-1} \ln \eta^{-1}} \leq \frac{k}{2\gamma_1}.$$
Epilogue: Problems remaining.

- Approximating diffusion process X_t: how it approximates $x(t)$? Various ways13. May need correction term14 from numerical SDE theory.

- Linerization assumption: typical in dynamical systems, but shall be moved by much harder work.

13 Li, Q., Tai, C., E. W., Stochastic modified equations and adaptive stochastic gradient algorithms, \textit{arXiv:1511.06251v3}

Thank you for your attention!