Second order elliptic equations with a small parameter.

Mark Freidlin 1, Wenqing Hu2.

1Department of Mathematics, University of Maryland, College Park.
2Department of Mathematics, University of Maryland, College Park.
We are interested in boundary problems for the operator \(L_\varepsilon = L_0 + \varepsilon L_1 \) and initial-boundary problems for \(\frac{\partial u^\varepsilon}{\partial t} = L_\varepsilon u^\varepsilon \), \(t > 0, \ x \in \partial G \).

Operators

\[
L_k = \mathbf{b}^{(k)}(x) \cdot \nabla + \frac{1}{2} \sum_{i,j=1}^{d} a^{(k)}_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j}, \quad k = 0, 1.
\]

Vectors \(\mathbf{b}^{(k)}(x) = (b^{(k)}_1(x), \ldots, b^{(k)}_d(x)), \quad k = 0, 1. \)

Coefficients \(a^{(k)}_{ij} \) and \(b^{(k)}_j \) are \(\mathcal{C}^2 \).

For fixed \(\varepsilon > 0 \) the operator \(L_\varepsilon \) is elliptic.
We take the Dirichlet problem as an example:

\[L_\varepsilon u_\varepsilon(x) = (L_0 + \varepsilon L_1)u_\varepsilon(x) = 0, \quad u_\varepsilon(x)|_{\partial G} = \psi(x). \]

If \(L_0 \) is elliptic, then \(u_\varepsilon \to u^0 \) as \(\varepsilon \downarrow 0 \) where \(L_0 u^0(x) = 0 \), \(u^0(x)|_{\partial G} = \psi(x) \).

What about degenerate \(L_0 \)?
Levinson case.

- Levinson case (1950):

 \[L_0 = b^{(0)}(x) \cdot \nabla \]

 and

 \[L_1 = b^{(1)}(x) \cdot \nabla + \frac{1}{2} \sum_{i,j=1}^{d} a_{ij}^{(1)}(x) \frac{\partial^2}{\partial x_i \partial x_j} \]

- Levinson condition: trajectories of the dynamical system \(\dot{X}_t = b^{(0)}(X_t) \) leave the domain \(G \) in finite time and cross the boundary \(\partial G \) in a regular way.

- Theorem. (Levinson, 1950) We have \(\lim_{\varepsilon \downarrow 0} u^\varepsilon(x) = u^0(x) \) where \(u^0(x) \) is the solution of \(L_0 u^0(x) = 0, \ x \in G \) and \(u^0|_{\partial_1 G} = \psi(x) \). Here \(\partial_1 G \) is the part of the boundary \(\partial G \) where \(X_t \) hits and leaves \(\partial G \).
FIG.: Levinson case.
Levinson case from probabilistic point of view.

- Levinson’s result can be easily explained from a probabilistic point of view.
- Let as before $\dot{X}_t = b^{(0)}(X_t)$.
- Consider a diffusion process with a small diffusion:

$$dX_t^\varepsilon = \sqrt{\varepsilon}\sigma^{(1)}(X_t^\varepsilon)\,dW_t + b^{(0)}(X_t^\varepsilon)\,dt,$$

$$X_0^\varepsilon = x \in \mathbb{R}^d.$$

- $\sigma^{(1)}(x)(\sigma^{(1)}(x))^* = a^{(1)}(x)$.
- As $\varepsilon \downarrow 0$ the process X_t^ε converges to X_t in a certain sense.
- Thus $u^\varepsilon(x) = \mathbf{E}_x\psi(X_t^\varepsilon) \to \mathbf{E}_x\psi(X_t) = u^0(x)$ as $\varepsilon \downarrow 0$.
- τ is the first hitting time of X_t^ε to ∂G.
Fig.: Levinson case.
Summary.

- **Summary**: Convergence of the solution of corresponding PDE \iff (Weak) convergence of corresponding diffusion process.
Degenerate problems : Neumann case.

- Neumann problem
 \[
 \left(\frac{1}{\varepsilon}L_0 + L_1 \right) u^\varepsilon(x) = f(x), \quad \frac{\partial u^\varepsilon(x)}{\partial \gamma^\varepsilon(x)}\bigg|_{\partial G} = 0.
 \]

- We work with self-adjoint situation
 \[
 L_k u(x) = \frac{1}{2} \nabla \cdot (a^{(k)}(x) \nabla u(x)).
 \]

- Solvability and uniqueness condition : for Hölder continuous
 \[
 \int f(x) \, dx = 0 \quad \text{and for } x_O \in G \cup \partial G \text{ we have } u(x_O) = 0.
 \]

- \(a^{(0)}(x)\) is degenerate and non-negative definite; \(a^{(1)}(x)\) is positive definite. Suppose \(a^{(0)}(x) = \sigma^{(0)}(x)(\sigma^{(0)}(x))^*\) and \(a^{(1)}(x) = \sigma^{(1)}(x)(\sigma^{(1)}(x))^*\). The coefficients of \(a^{(1)}(x)\) are in \(C^{(2)}\) and the coefficients of \(a^{(0)}(x)\) are in at least \(C^{(1)}\).

- We specify the degeneration by looking at a first integral
 \(H(x) : a^{(0)}(x) \nabla H(x) = 0\).

- We single out only one first integral by making a restriction
 \[e \cdot (a^{(0)}(x)e) \geq a(x)|e|^2_{\mathbb{R}^d} \quad \text{for each } e \text{ such that } e \cdot \nabla H(x) = 0.\]
First we assume that $a^{(0)}(x)$ has constant rank $d-1$ and its coefficients are in $C^{(2)}$.

Corresponding process

$$
dX_t^\varepsilon = \frac{1}{\varepsilon} b^{(0)}(X_t^\varepsilon) dt + \frac{1}{\sqrt{\varepsilon}} \sigma^{(0)}(X_t^\varepsilon) dW^0_t \quad \text{(fast motion)}
$$

$$
+ b^{(1)}(X_t^\varepsilon) dt + \sigma^{(1)}(X_t^\varepsilon) dW^1_t.
$$

with reflection w.r.t. inward co-normal $\gamma^\varepsilon(x)$ at ∂G.

$b^{(0)}$ and $b^{(1)}$ are calculated from $a^{(0)}$ and $a^{(1)}$.

Fast motion is moving on level surface $\{H(x) = \text{const}\}$ and has Lebesgue measure as its invariant measure.

Averaging principle (Khasminski, Freidlin-Wentzell, ...) : The limit of slow motion $H(X_t^\varepsilon)$ can be calculated by averaging with respect to the fast motion : $H(X_t^\varepsilon) \to Y_t$ weakly as $\varepsilon \downarrow 0$.
Fig.: Averaging Principle.
Averaging principle.

- $H(X^\varepsilon_t) \to Y_t$ weakly in $C_{[0,T]}(\Gamma)$.
- Y_t is a 1-dimensional process.
- In the simplest case as in our example Y_t has a generator
 \[\mathcal{L}f(H) = \frac{1}{2} M^{-1}(H) \frac{d}{dH} \left(M(H) a^{(1)}(H) \frac{df}{dH} \right). \]
- Here $a^{(1)}(h) = M^{-1}(h) \int_{C(h)} \frac{(a^{(1)}(x) \nabla H(x), \nabla H(x))}{|\nabla H(x)|_{\mathbb{R}^d}} d\sigma$ and $M(h) = \int_{C(h)} \frac{d\sigma}{|\nabla H(x)|_{\mathbb{R}^d}}$.

\[H(X^\varepsilon_t) \to Y_t \text{ weakly in } C_{[0,T]}(\Gamma). \]
\[Y_t \text{ is a 1-dimensional process.} \]
\[\text{In the simplest case as in our example } Y_t \text{ has a generator} \]
\[\mathcal{L}f(H) = \frac{1}{2} M^{-1}(H) \frac{d}{dH} \left(M(H) a^{(1)}(H) \frac{df}{dH} \right). \]
\[\text{Here } a^{(1)}(h) = M^{-1}(h) \int_{C(h)} \frac{(a^{(1)}(x) \nabla H(x), \nabla H(x))}{|\nabla H(x)|_{\mathbb{R}^d}} d\sigma \text{ and} \]
\[M(h) = \int_{C(h)} \frac{d\sigma}{|\nabla H(x)|_{\mathbb{R}^d}}. \]
The implication of averaging principle on differential equations.

▶ Neumann problem:
\[
\left(\frac{1}{\varepsilon}L_0 + L_1 \right) u^\varepsilon(x) = f(x) \quad \text{for } x \in G, \quad \frac{\partial u^\varepsilon(x)}{\partial \gamma^\varepsilon(x)} \bigg|_{x \in \partial G} = 0.
\]

▶
\[
u^\varepsilon(x) = - \int_0^\infty E_x f(X_t^\varepsilon) dt + \int_0^\infty E_{x_0} f(X_t^\varepsilon) dt.
\]
Fig.: Identification mapping \mathcal{Y}.
The implication of averaging principle on differential equations.

\[u^\varepsilon(x) = -\int_0^\infty \mathbf{E}_x f(X^\varepsilon_t)dt + \int_0^\infty \mathbf{E}_{x_0} f(X^\varepsilon_t)dt \]
\[\to -\int_0^\infty \mathbf{E}_{2y(x)} \bar{f}(Y_t)dt + \int_0^\infty \mathbf{E}_{2y(x_0)} \bar{f}(Y_t)dt = v(2y(x)) . \]

\[\bar{f}(h) = \frac{1}{M(h)} \int_{C(h)} f(x) \frac{d\sigma}{|\nabla H(x)|_{\mathbb{R}^d}} . \]

\[v(h) \text{ is the solution of ODE on } \Gamma : \mathcal{L}v(h) = -\bar{f}(y) \text{ and } v(2y(x_0)) = 0. \]
A few remarks.

- The case when $H(x)$ has saddle point in G : gluing condition at the interior vertices of Γ. (Freidlin-Wentzell, PTRF, 2012)
- The case of attractor : In the sense of random perturbations of dynamical systems – large deviation principle. (Freidlin-Wentzell, 1969 ; Kifer, 1974)
Our problem.

- We are interested in the case that $a^{(0)}(x)$ has rank d in $\mathcal{E} \subset G$ and rank $d - 1$ in $[G] \setminus \mathcal{E} = \bigcup_{k=1}^{r} [U_k]$.
- Global first integral $H(x): H(x) = 0$ on $[\mathcal{E}]$ and $H(x) = H_k(x)$ on $[U_k]$.
FIG.: Our problem.
Assumption on the degeneracy.

- On \(\bigcup_{k=1}^{r} [U_k] \) : \(a^{(0)}(x) \) has rank \(d - 1 \). Existence of first integrals \(H_k, \ k = 1, \ldots, r \). Non-dengeneracy on \(C_k(h) = \{ x \in U_k : H_k(x) = h \} \), etc. similar assumptions as in the averaging principle.

- Denote \(\gamma_k = \partial U_k \) and \(\gamma = \bigcup_{k=1}^{r} \gamma_k \).

- \(\text{const}_1 \cdot \text{dist}^2(x, \gamma) \leq e_d(x) \cdot (a^{(0)}(x)e_d(x)) \leq \text{const}_2 \cdot \text{dist}^2(x, \gamma) \). ("quadratic degeneracy")

- Coefficients of \(a^{(0)}(x) \) are in \(\mathbf{C}^{(1)} \) on \(\gamma \). We assume the decomposition \(\sigma^{(0)}(x)(\sigma^{(0)}(x))^* = a^{(0)}(x) \).
Figure: Identification mapping \(\mathcal{Y} \).
Weak convergence of the process $Y^\varepsilon_t = \mathcal{Y}(X^\varepsilon_t)$.

- Let $Y^\varepsilon_t = \mathcal{Y}(X^\varepsilon_t)$.
- We can introduce the graph Γ with coordinate (k, H).
- Y^ε_t lives on Γ and is, in general, not Markov for fixed $\varepsilon > 0$.
- $Y^\varepsilon_t \to Y_t$ weakly as $\varepsilon \downarrow 0$ in $C[0,T](\Gamma)$.
- Inside each I_k the process Y_t has a generator

$$
\mathcal{L}_k f(k, H_k) = \frac{1}{2} M_k^{-1}(H_k) \frac{d}{dH_k} \left(M_k(H_k) a^{(1)}(H_k) \frac{df}{dH_k} \right).
$$

- Here

$$
\overline{a^{(1)}}(h) = M_k^{-1}(h) \int_{C_k(h)} \frac{(a^{(1)}(x) \nabla H_k(x), \nabla H_k(x))}{|\nabla H_k(x)|_{\mathbb{R}^d}} d\sigma,
$$

and normalizing factor

$$
M_k(h) = \int_{C_k(h)} \frac{d\sigma}{|\nabla H_k(x)|_{\mathbb{R}^d}}.
$$
Weak convergence of the process $Y^\varepsilon_t = \mathcal{Y}(X^\varepsilon_t)$.

- What is more important: Y_t is a Markov process on Γ with generator A and domain of definition $D(A)$.
- Inside each I_k A agrees with \mathcal{L}_k. (standard averaging principle)
- The domain of definition $D(A)$ consists of those functions f that are twice continuously differentiable inside each I_k having the limit $\lim_{H_k \to 0} \frac{\partial f}{\partial H_k}(k, H_k)$. These functions satisfy the gluing condition at the vertex O:

$$0 = \text{Volume}(\mathcal{E}) \cdot Af(O) + \frac{1}{2} \sum_{k=1}^r p_k \cdot \lim_{H_k \to 0} \frac{\partial f}{\partial H_k}(k, H_k).$$

(gluing condition of "delay" type)

- Here $\text{Volume}(\mathcal{E})$ is the d-dimensional volume of the domain \mathcal{E} and

$$p_k = \int_{\gamma_k} \frac{(a^{(1)}(x) \nabla H_k(x), \nabla H_k(x))}{|\nabla H_k(x)|_{\mathbb{R}^d}} d\sigma.$$

Fig.: gluing condition of "delay" type.
The answer to our problem.

- **Theorem.** (Freidlin-H, 2012, preprint) *Consider the Neumann problem*

\[
\frac{1}{\varepsilon} L_\varepsilon u_\varepsilon(x) = \left(\frac{1}{\varepsilon} L_0 + L_1 \right) u_\varepsilon(x) = f(x) \text{ for } x \in G ,
\]

\[
\frac{\partial u_\varepsilon(x)}{\partial \gamma_\varepsilon(x)} \bigg|_{x \in \partial G} = 0
\]

with a Hölder continuous function \(f(x) \)* satisfying

\[
\int_G f(x) dx = 0. \text{ Let } u_\varepsilon(x_0) = 0 \text{ for some } x_0 \in G. \text{ Then we have}
\]

\[
\lim_{\varepsilon \downarrow 0} u_\varepsilon(x) = v(\gamma(x))
\]

where \(v(y) \)* is a continuous function on* \(\Gamma \)* such that

\[
\mathcal{L}_k v(y) = -\bar{f}(y) \text{ for } y \in (l_k) , \ k = 1, \ldots, r .
\]
The answer to our problem.

▶ **Theorem.** (continued) (Freidlin-H, 2012, preprint)

Here

\[
\bar{f}(y) = \frac{1}{\text{Volume}(\mathcal{E})} \int_{\mathcal{E}} f(x) \, dx
\]

when \(y = O \) and

\[
\bar{f}(y) = \frac{1}{M_k(H_k)} \int_{C_k(H_k)} f(x) \frac{d\sigma}{|\nabla H_k(x)|_{\mathbb{R}^d}}
\]

when \(y = (k, H_k) \). The function \(v(y) \) satisfies the gluing condition

\[
0 = \text{Volume}(\mathcal{E}) \cdot \text{Av}(O) + \frac{1}{2} \sum_{k=1}^{r} p_k \cdot \lim_{H_k \to 0} \frac{\partial v}{\partial H_k}(k, H_k) .
\]

and \(v(\mathcal{Y}(x_O)) = 0 \). Such a function \(v(y) \) is unique.
Why $Y^\varepsilon_t \to Y_t$ weakly in $C_{[0,T]}(\Gamma)$? Heuristics.

- This proof of the convergence follows from the argument of Dolgopyat & Koralov, to appear in *Journal of AMS*. The basic idea can also be found in the classical monograph of Freidlin & Wentzell, Chapter 8.

- Situation is similar but actually simpler than the case of averaging for Hamiltonian flows on \mathbb{T}^2.

- For motion of X^ε_t inside each of the $[U_k]$’s, the result is just a consequence of averaging principle, as we just did before in our example.

- For the motion of X^ε_t in \mathcal{E}, the reason is that we have glued all points in \mathcal{E} into one point O.
Why $Y^\varepsilon_t \to Y_t$ weakly in $C_{[0,T]}(\Gamma)$? Heuristics.

- For fixed $\varepsilon > 0$ Lebesgue measure is invariant for the process X^ε_t in $[G]$.
- When we do the projection $\mathcal{Y} : [G] \to \Gamma$, the limiting process Y_t, as a result, is expected to have an invariant measure μ on Γ, which is induced by Lebesgue measure of X^ε_t on $[G]$.
- In particular, $\mu(\{O\}) = \text{Volume}(\mathcal{E})$.
- We have
 \[\int_{\Gamma} Au(k, h) d\mu = 0. \]
- The above relation, when expanded, gives the gluing condition:
 \[0 = \text{Volume}(\mathcal{E}) \cdot \text{Av}(O) + \frac{1}{2} \sum_{k=1}^{r} p_k \cdot \lim_{H_k \to 0} \frac{\partial v}{\partial H_k}(k, H_k). \]
The proof: a short review of technicalities.

- The proof of convergence $\mathcal{Y}(X_t^\varepsilon) \to Y_t$ in $C_{[0,T]}(\Gamma)$ makes use of martingale problem techniques. I will omit the technicalities in this point here.

- We need to show that the process X_t^ε, as ε is small, quickly tend to its invariant measure.

- This is not immediately obvious since as ε is small the process X_t^ε is close to a degenerate one near γ. In other words, we expect the process X_t^ε to move slower and slower when it approaches γ.

- The key underlying reason that this is true is because of our assumption of "quadratic degeneracy":

$$\text{const}_1 \cdot \text{dist}^2(x, \gamma) \leq e_d(x) \cdot (a^{(0)}(x)e_d(x)) \leq \text{const}_2 \cdot \text{dist}^2(x, \gamma).$$
The proof: a short review of technicalities.

- We need the control of certain stopping times:

\[\lim_{\varepsilon \downarrow 0} \sup_{x \in [\varepsilon]} E_x \sigma = 0, \]
\[\lim_{\varepsilon \downarrow 0} \sup_{x \in \gamma} E_x \tau = 0, \]
\[\lim_{\varepsilon \downarrow 0} \sup_{x \in \gamma} E_x \sigma = 0. \]

- These are estimated via the construction of barrier functions.
Fig. Details in the proof.
The proof: a short review of technicalities.

- Geometric construction: extension of the first integral H_k to a neighborhood outside γ.
- "Global barrier": first introduce a Riemannian coordinate $(\varphi_1^k, \ldots, \varphi_{d-1}^k, H_k)$ near γ.
- "Barrier" function $u_k = u_k(H_k)$.
- Making use of some basic facts in Riemannian geometry it is possible to show that

\[
\left(\frac{1}{\varepsilon} L_0 + L_1 \right) u_k(x)
= \frac{1}{A(x)} \left[\frac{\partial}{\partial H_k} \left(\left(\frac{K_1(x)}{\varepsilon} + K_2(x) \right) \frac{du_k}{dH_k}(H_k) \right) + K_3(x) \frac{du_k}{dH_k}(H_k) \right].
\]
The proof: a short review of technicalities.

- Making use of these barriers accompanied by some **dangerous** estimates our process X_t^ε is able to freely travel in and out of γ.
- This is the main technical part of the work yet I will omit it in this talk.
The End.

- Thank you for your attention!