Small mass asymptotic for the motion with variable and vanishing friction.

Mark Freidlin1, Wenqing Hu2, Alexander Wentzell3.

1University of Maryland, College Park.
2University of Maryland, College Park.
3Tulane University.
The Langevin equation for a particle in a fluid is the Newton’s equation of a form
\[
\mu \ddot{q}_t^\mu = b(q_t^\mu) - \lambda \dot{q}_t^\mu + \sigma(q_t^\mu) \dot{W}_t, \quad q_0^\mu = q \in \mathbb{R}^d, \quad \dot{q}_0^\mu = p \in \mathbb{R}^d.
\]

- \(q_t^\mu \) the position of the particle; \(\mu \) is the small mass; \(\lambda > 0 \) is a constant friction; \(b(\bullet) \) is the drift; \(\sigma(\bullet) \) is a diffusion matrix; \(\dot{W}_t \) is a multidimensional Wiener process.
Small mass asymptotic (Smoluchowski-Kramers approximation).

- **Langevin equation**
 \[
 \mu \ddot{q}_t^{\mu} = b(q_t^{\mu}) - \lambda \dot{q}_t^{\mu} + \sigma(q_t^{\mu})\dot{W}_t, \quad q_0^{\mu} = q \in \mathbb{R}^d, \quad \dot{q}_0^{\mu} = p \in \mathbb{R}^d.
 \]

- Let \(\mu = 0 \) we get
 \[
 \dot{q}_t = \frac{1}{\lambda} b(q_t) + \frac{1}{\lambda} \sigma(q_t)\dot{W}_t, \quad q_0 = q_0^{\mu} = q \in \mathbb{R}^d.
 \]

- For any \(\kappa > 0 \) we have
 \[
 \lim_{\mu \downarrow 0} P \left(\max_{0 \leq t \leq T} |q_t^{\mu} - q_t|_{\mathbb{R}^d} > \kappa \right) = 0.
 \]

- The above approximation is called *Smoluchowski-Kramers approximation*.
Variable friction $\lambda = \lambda(q)$?

▶ Variable friction: $\lambda = \lambda(q)$ is a function of the position.

▶ First suppose that $0 < \lambda_0 \leq \lambda(q) \leq \Lambda < \infty$.

▶ Langevin equation with variable friction

$$\mu \ddot{q}_t^\mu = b(q_t^\mu) - \lambda(q_t) \dot{q}_t^\mu + \sigma(q_t^\mu) \dot{W}_t, \quad q_0^\mu = q \in \mathbb{R}^d, \quad \dot{q}_0^\mu = p \in \mathbb{R}^d.$$

▶ Let $\mu = 0$ we get

$$\dot{q}_t = \frac{b(q_t)}{\lambda(q_t)} + \frac{\sigma(q_t)}{\lambda(q_t)} \dot{W}_t.$$

▶ Is it again true that for any $\kappa > 0$ we have

$$\lim_{\mu \downarrow 0} P \left(\max_{0 \leq t \leq T} |q_t^\mu - q_t|^d \mathbb{R}^d > \kappa \right) = 0 ?$$
Variable friction $\lambda = \lambda(q)$?

- The answer is **NO** in general.
- One has to use a further regularization.
- **Remark.** If friction is variable, the limit still can exist without regularization. It is a bit different from the constant friction case, but it coincides with the regularized result. See [Hottovy et al., *J Stat Phys* (2012) **146**, 762–773].
Approximation of the Wiener process.

Approximation of the Wiener process

\[W^\delta_t = \frac{1}{\delta} \int_0^\infty W_s \rho \left(\frac{s-t}{\delta} \right) ds = \frac{1}{\delta} \int_0^\delta W_{s+t} \rho \left(\frac{s}{\delta} \right) ds, \]

where \(\rho(\bullet) \) is a smooth \(C^\infty \) function whose support is contained in the interval \([0, 1]\) such that

\[\int_0^1 \rho(s) ds = 1. \]

\(\dot{W}^\delta_t \) is a small \(\delta \)-correlated noise.
Regularized Smoluchowski-Kramers approximation.

▶ Langevin equation with an approximated Wiener process

\[
\mu \ddot{q}_{t}^{\mu,\delta} = b(q_{t}^{\mu,\delta}) - \lambda(q_{t}^{\mu,\delta}) \dot{q}_{t}^{\mu,\delta} + W_{t}^{\delta}, \quad q_{0}^{\mu,\delta} = q \in \mathbb{R}^d, \quad \dot{q}_{0}^{\mu,\delta} = p \in \mathbb{R}^d.
\]

▶ First let \(\mu \downarrow 0 \) we have

\[
\dot{\tilde{q}}_{t}^{\delta} = \frac{b(\tilde{q}_{t}^{\delta})}{\lambda(\tilde{q}_{t}^{\delta})} + \frac{1}{\lambda(\tilde{q}_{t}^{\delta})} \dot{W}_{t}^{\delta}, \quad \tilde{q}_{0}^{\delta} = q \in \mathbb{R}^d.
\]

▶ Regularized Smoluchowski-Kramers approximation

\[
\lim_{\mu \downarrow 0} P \left(\max_{0 \leq t \leq T} |q_{t}^{\mu,\delta} - \tilde{q}_{t}^{\delta}|_{\mathbb{R}^d} > \kappa \right) = 0.
\]
Regularized Smoluchowski-Kramers approximation:

Second limit as $\delta \downarrow 0$.

- First let $\mu \downarrow 0$ we have
 \[
 \dot{\tilde{q}}^\delta_t = \frac{b(\tilde{q}^\delta_t)}{\lambda(\tilde{q}^\delta_t)} + \frac{1}{\lambda(\tilde{q}^\delta_t)} \tilde{W}^\delta_t, \quad \tilde{q}^\delta_0 = q \in \mathbb{R}^d.
 \]

- Second limit: as $\delta \downarrow 0$ we let
 \[
 \dot{\hat{q}}_t = \frac{b(\hat{q}_t)}{\lambda(\hat{q}_t)} + \frac{1}{\lambda(\hat{q}_t)} \hat{W}_t, \quad \hat{q}_0 = q \in \mathbb{R}^d.
 \]

- Limit as $\delta \downarrow 0$:
 \[
 \lim_{\delta \to 0} \mathbb{E} \max_{t \in [0, T]} |\tilde{q}^\delta_t - \hat{q}_t|_{\mathbb{R}^d} = 0.
 \]

- Because of the Wong-Zakai theorem we have Stratonovich integral instead of Itô integral.

Fast oscillating friction and drift

\[\mu \ddot{q}_{t}^{\mu,\delta,\varepsilon} = \begin{bmatrix} b \left(\frac{q_{t}^{\mu,\delta,\varepsilon}}{\varepsilon} \right) - \lambda \left(\frac{q_{t}^{\mu,\delta,\varepsilon}}{\varepsilon} \right) \dot{q}_{t}^{\mu,\delta,\varepsilon} + \dot{W}_{t}^{\delta} \end{bmatrix}, \]

\[q_{0}^{\mu,\delta,\varepsilon} = q \in \mathbb{R}^{d}, \quad \dot{q}_{0}^{\mu,\delta,\varepsilon} = p \in \mathbb{R}^{d}. \]

Using homogenization theory to characterize the limit as first \(\mu \downarrow 0 \) and then \(\delta \downarrow 0 \) and then \(\varepsilon \downarrow 0 \).
Application 2. Friction with jump: gluing condition.

- Friction with a jump, 1-d case:
 \[\mu q^{\mu,\delta,\varepsilon}_t = b(q_t^{\mu,\delta,\varepsilon}) - \lambda_\varepsilon(q_t^{\mu,\delta,\varepsilon}) q_t^{\mu,\delta,\varepsilon} + \dot{W}_t^\delta, \]
 \[q^{\mu,\delta,\varepsilon}_0 = q \in \mathbb{R}^1, \quad \dot{q}^{\mu,\delta,\varepsilon}_0 = p \in \mathbb{R}^1. \]

- \(\lim_{\varepsilon \downarrow 0} \lambda_\varepsilon(q) = \lambda_1 > 0 \) for \(q < 0. \)

- \(\lim_{\varepsilon \downarrow 0} \lambda_\varepsilon(q) = \lambda_2 > 0 \) for \(q \geq 0. \)

- \(\lambda_1 \neq \lambda_2. \)

- Gluing condition \(\frac{1}{\lambda_1} f'_-(O) = \frac{1}{\lambda_2} f'_+(O). \) (Such boundary conditions are typical for diffusion processes on graphs!)
gluing condition at O: \[\frac{1}{\lambda_1} f_-(O) = \frac{1}{\lambda_2} f_+(O) \]
Vanishing friction.

- We assumed previously that $0 < \lambda_0 \leq \lambda(q) \leq \Lambda < \infty$.
- What if in some regions we have $\lambda(q) = 0$?
What is the generator and boundary condition?

G

\(\lambda(q) = 0 \)

no time spent here? mixing in G?

Limiting process lives outside G ... so ...

boundary condition?

Fig.
Vanishing friction: Regularization.

- We apply a further regularization by adding a small ε in the friction:

$$\mu \ddot{q}_{t, \mu, \delta, \varepsilon} = b(q_{t, \mu, \delta, \varepsilon}) - (\lambda(q_{t, \mu, \delta, \varepsilon}) + \varepsilon)\dot{q}_{t, \mu, \delta, \varepsilon} + \dot{W}_{t, \delta},$$

$$q_{0, \mu, \delta, \varepsilon} = q, \quad \dot{q}_{0, \mu, \delta, \varepsilon} = p.$$

- We assume that $\lambda(q) = 0$ for $q \in [G] \subset \mathbb{R}^n$ and $\lambda(q) > 0$ for $q \in \mathbb{R}^n \setminus [G]$. Here G is a domain in \mathbb{R}^n and $[G]$ its closure in the standard Euclidean metric.

- For simplicity of presentation we assume that $\sigma(\cdot) = \text{identity}$.

- We study the limit as first $\mu \downarrow 0$ then $\delta \downarrow 0$ and then $\varepsilon \downarrow 0$.
Vanishing friction: first $\mu \downarrow 0$ and then $\delta \downarrow 0$.

As first $\mu \downarrow 0$ and then $\delta \downarrow 0$ previous results apply: the limiting process looks like

$$\dot{q}_t^\varepsilon = \frac{1}{\lambda(q_t^\varepsilon) + \varepsilon} b(q_t^\varepsilon) + \frac{1}{\lambda(q_t^\varepsilon) + \varepsilon} \circ \dot{W}_t$$

and we study the limit of q_t^ε as $\varepsilon \downarrow 0$.

In Itô’s form it is

$$\dot{q}_t^\varepsilon = \frac{1}{\lambda(q_t^\varepsilon) + \varepsilon} b(q_t^\varepsilon) - \frac{\nabla \lambda(q_t^\varepsilon)}{2(\lambda(q_t^\varepsilon) + \varepsilon)^3} + \frac{1}{\lambda(q_t^\varepsilon) + \varepsilon} \dot{W}_t$$
Vanishing friction: general theme.

- Limiting process lives outside the domain G.
- **Glue all points of $[G]$** and introduce a projection π.
- The projected space (image of π) is appropriate for a continuous version of the limiting process to live in.
- We have to show Markov property of the limiting process.
- We have to identify the generator of the limiting process (in Hille-Yosida sense).
- We have to specify the boundary condition (=domain of definition of the generator) at the image of $\pi([G])$.
Vanishing friction: 1-d case.

\[\dot{q}_t^\varepsilon = \frac{b(q_t^\varepsilon)}{\lambda(q_t^\varepsilon) + \varepsilon} - \frac{\lambda'(q_t^\varepsilon)}{2(\lambda(q_t^\varepsilon) + \varepsilon)^3} + \frac{1}{\lambda(q_t^\varepsilon) + \varepsilon} \dot{W}_t, \quad q_0^\varepsilon = q_0 \in \mathbb{R}. \]

- Feller’s $D_{m^\varepsilon}D_{s^\varepsilon}$ process. m^ε-speed measure; s^ε-scale function.
- $\lambda(q) = 0$ for $q \in [-1, 1]$. Outside $[-1, 1]$ we have $m^\varepsilon(\bullet) \to m(\bullet)$ and $s^\varepsilon(\bullet) \to s(\bullet)$ as $\varepsilon \downarrow 0$.

- Gluing condition:

\[D_m^- f(O) = D_m^+ f(O). \]
original process generator $= D_m \varepsilon D_s \varepsilon$

limiting process is Markov
generator (in Hille-Yosida sense) is $D_m D_s$
gluing condition at O: $D^-_m f(O) = D^+_m f(O)$
Vanishing friction : 2-d model problem.

- Assume $\lambda(x, y) = \lambda(y)$ and $b(\bullet) = 0$.
- $\lambda(y) = 0$ for $y \in [-1, 1]$.
- The equation
 \[
 \dot{q}^\varepsilon_t = -\frac{\nabla \lambda(q^\varepsilon_t)}{2(\lambda(q^\varepsilon_t) + \varepsilon)^3} + \frac{1}{\lambda(q^\varepsilon_t) + \varepsilon} \dot{W}_t, \quad q^\varepsilon_0 = q_0 \in \mathbb{R}^2, \varepsilon > 0,
 \]
 becomes
 \[
 \begin{cases}
 \dot{x}^\varepsilon_t = \frac{1}{\lambda(y^\varepsilon_t) + \varepsilon} \dot{W}^1_t, \quad x^\varepsilon_0 = x_0 \in \mathbb{R}, \\
 \dot{y}^\varepsilon_t = -\frac{\lambda'(y^\varepsilon_t)}{2(\lambda(y^\varepsilon_t) + \varepsilon)^3} + \frac{1}{\lambda(y^\varepsilon_t) + \varepsilon} \dot{W}^2_t, \quad y^\varepsilon_0 = y_0 \in \mathbb{R}.
 \end{cases}
 \]
- Let $x \sim \theta \pmod{1}$.
In the domain (1) mixing;

(2) spend very short time;

(3) exit at a uniform distribution in \(\theta \).
Vanishing friction : 2-d model problem.

- Limiting process lives in a double cone.
- Existence in the sense of Hille-Yosida.
- Once it hits O it immediately leaves O.
- Gluing condition is a generalized Feller’s boundary condition:

$$\int_0^{2\pi} \lim_{\theta' \to \theta, \tilde{y} \to 0-} D_m f(\theta', \tilde{y}) d\theta = \int_0^{2\pi} \lim_{\theta' \to \theta, \tilde{y} \to 0+} D_m f(\theta', \tilde{y}) d\theta .$$

(It is similar to that of a Walsh BM !)
Vanishing friction: general case.

- We still do not know.
- First difficulty is to establish *existence* of the limiting process with a specified boundary condition.
The end

Thank you for your attention!