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Axioms of Probability Theory

I Axioms of Probability Theory (A.N.Kolmogorov, Grundbegriffe
der Wahrscheinlichkeitsrechnung, 1933) : (Ω,F ,P)

I Ω is a sample space of elementary events, F is a σ-algebra on
the sample space, and P is a probability measure given
a-priori.

I Usually one does not know P in any realistic way. However, P
has to be given first before probabiliy calculations can be
carried on.



Statistical Inference

I “Statistical inferences are based only in part upon the
observations. An equally important base is formed by prior
assumptions about the underlying situation. Even in the
simplest cases, there are explicit or implicit assumptions about
randomness and independence, about distributional models,
perhaps prior distributions for some unknown parameters, and
so on.”

– P.J.Huber, Robust Statistics. John Wiley & Sons, 1981



Building Statistics from Probability and Vice Versa

I The route of building statistical models from probability, as an
integral part of data science, thus, should always start with
the “basic assumption of a probability space including a prior
probability measure”.

I Reverse Direction : Building Probability from Statistics ?

I Bayesian logic. Frequentist ?

I Development in the Ergodic Theory and Dynamical Systems.
(Sinai, Ornstein, etc.)



Our question

I Our question : Given an observation of the empirical
frequencies of a random process, to what extent can we
recover the probability structure of the original random
process via conditioning ?

I A very simple but attractive problem !



Two Paradigms of Doing Science : Newtonian an Keplerian

I Two different paradigms of doing scientific research 2.

I The Newtonian paradigm : the first-principle-based approach.

I The Keplerian paradigm : the data-driven approach.

I The current Data Science is in the Keplerian Paradigm !

2Refer to W. E., The dawning of a new era in applied mathematics. Notices
of the American Mathematical Society, 68(4) :565-571, 2021.



The i.i.d case : Set-up

I Let X1, ..., Xn, ... be an i.i.d sequence defined on the
probability space (Ω,F ,P) with common distribution as a
random variable X taking values in N.

I Given a sequence of sample frequencies νk ∈ N+ satisfying∑
k∈N

νk = n ,

we consider the event

E{νk} =

{
n∑
`=1

1k(X`) = νk , k ∈ N

}
,

where 1k(X`) =

{
1 , if X` = k ,
0 , otherwise .



The i.i.d case : Set-up

I E{νk} stands for the event that the trajectory X`, ` = 1, 2, ..., n
takes on value k with frequency νk , k ∈ N, respectively.

I Example : X1 = 1,X2 = 2,X3 = 1,X4 = 1,X5 = 4. Then
E{νk} = {ν1 = 3, ν2 = ν4 = 1, νk = 0 for all other k}.

I Given E{νk}, what is the posterior distribution of X` where
` = 1, 2, ..., n ?



The i.i.d case : Theorem

Theorem (posterior distribution for the i.i.d. case)

Given m ∈ N and any 1 ≤ ` ≤ n, we have

P
(
X` = m

∣∣E{νk}) =
νm
n
.



The i.i.d case : Heuristics

I Why ? Simple symmetry leads to the fact.

I Think of

Case X1 X2 X3 X4 X5

a 1 2 1 1 4

b 2 1 1 4 1

c 1 1 1 2 4

I In each case, the joint probability is the same !

I Conditional Symmetry : As long as E{νk} is observed, the
joint probability of X1, ...,Xn is symmetric with respect to any
permutations of the outcomes.



The i.i.d case : Heuristics

I Think of one outcome

(1, 2, 1, 1, 4)



(1, 2, 1, 1, 4)
(1, 2, 1, 1, 4)
(1, 2, 1, 1, 4)
(1, 2, 1, 1, 4)
(1, 2, 1, 1, 4)
(1, 2, 1, 1, 4)

I We can color the same outcome 1 with different colors to
create “different” outcome sequences.

I We “lift” the conditional probability P(•|E{νk}) to a new
probability P on the space of colored sequences with given
frequency event E{νk}.



The i.i.d case : Heuristics

I In the space of colored sequences any probability

P(Xk = some colored m)
∝ Number of colored trajectories such that

Xk = some colored m

I A higher level of Conditional Symmetry : This number is
the same no matter how you choose the colored m, as long as
the frequency event E{νk} is given.



The i.i.d case : Soft proof

I So actually P(Xk = some colored m) =
1

n
.

I And thus

P(Xk = m|E{νk}) =
νm∑
i=1

P(Xk = m with color i) =
νm
n

.

I The Theorem is softly proved !



The i.i.d case : Conditional Symmetry ideas

I Two levels of conditional symmetries are used in the i.i.d case.

I Conditional Symmetry at the level of sample path
trajectories : As long as E{νk} is given, we can permute any of
the realizations of (X1, ...,Xn) in a trajectory without
changing the joint probability 3.

I Conditional Symmetry at the level of individual observations :
As long as E{νk} is given, fix Xk = some colored m, then the
number of colored trajectories such that Xk = some colored m
is independent of the colored m.

3It is related to de Finetti’s “exchangeablilty”, see P. Diaconis and D.
Freedman, de Finettis theorem for Markov chains. The Annals of Probability,
8 :115-130, 1980. In that work the authors are considering another problem,
that exchangebility implies some “averaged” transition probability.



The i.i.d case : Empirical Frequency as Posterior
Probability

Conditional Symmetry
leads to→ Empirical Frequency

= Posterior Probability.



The finite Markov chain case : Set-up

I Is the above a general philosophy ?

I Finite Markov chain case : Y1, ...,Yn, ... is a
time-homogeneous Markov chain with finite state space
Σ = {1, ...,N}, |Σ| = N.

I Transition probability matrix is P = (pij)1≤i ,j≤N .

I Assume the process starts from an initial probability

distribution π0 = (π0
1, ..., π

0
N), 0 ≤ π0

i ≤ 1,
N∑
i=1

π0
i = 1, such

that P(Y1 = i) = π0
i .



The finite Markov chain case : Set-up

I How do we count “empirical frequencies” in this case ?

I Consider the “consecutive pair” process
X` = (Y`,Y`+1), ` ≥ 1.

I Given a sequence of sample frequencies ν(i ,j) ∈ N+ satisfying

N∑
i=1

N∑
j=1

ν(i ,j) = n ,

we consider the event

E{ν(i,j)} =

{
n∑
`=1

1(i ,j)(X`) = ν(i ,j), 1 ≤ i , j ≤ N

}
,

where 1(i ,j)(X`) =

{
1 , if X` = (i , j) ,
0 , otherwise .



The finite Markov chain case : Set-up

I E{ν(i,j)} stands for the event that the trajectory

X` (` = 1, ..., n) takes on value (i , j) with frequency ν(i ,j),
1 ≤ i , j ≤ N, respectively.

I Example : (Y1,Y2,Y3,Y4,Y5) = (1, 2, 1, 1, 2), then
X1 = (1, 2),X2 = (2, 1),X3 = (1, 1),X4 = (1, 2) and

E{ν(i,j)} =
{
ν(1,2) = 2, ν(2,1) = ν(1,1) = 1,

ν(i ,j) = 0 for any other (i , j)
}
.



The finite Markov chain case : Conditional Symmetry

I Do we have the same conditional symmetry as the i.i.d. case ?

I Given a path X1 = (i11, i12),X2 = (i21, i22), ...,Xn = (in1, in2),
the joint probability is given by

P (X1 = (i11, i12),X2 = (i21, i22), ...,Xn = (in1, in2))

= πi11
0 pi11i12 ...pin1in2 .

I The path has to be of a “chain type string”, i.e., i12 = i21, ...,
etc. Based on this, one can check that given E{ν(i,j)} we must
have

N∑
j=1

ν(i ,j) −
N∑
j=1

ν(j ,i) = 1{i=i1} − 1{i=in+1} .



The finite Markov chain case : Conditional Symmetry

I Permutations on the entries of X`’s will not change this joint
probability, as long as the permutation does not “break” the
chain.

I So we still have conditional symmetry at the level of sample
path trajectories.



The finite Markov chain case : Constraints made by the
frequency event E{ν(i,j)}

I For the chain case, given E{ν(i,j)}, the choices of Y` and X` are
not arbitrary.

I Example : Suppose {Y`}`≥1 is a stationary Markov chain with
a 3-element state space {1, 2, 3} and stationary measure
π = ( 1

3 ,
1
3 ,

1
3 ). Set n = 2 and suppose we have observed

E{ν(i,j)} =
{
ν(1,2) = ν(2,3) = 1, ν(i ,j) = 0 for all other pairs of (i , j)

}
.

Then it is easy to see that P(Y1 = 1|E{ν(i,j)}) = 1 while

P(Y1 = 2|E{ν(i,j)}) = P(Y1 = 3|E{ν(i,j)}) = 0.



The finite Markov chain case : New Definitions

I Define ΣX(`|E{ν(i,j)}) ={
i : 1 ≤ i ≤ N , P(Y` = i |E{ν(i,j)}) > 0

}
, 1 ≤ ` ≤ n .

I Define
1i ,X
` ≡ 1ΣX(`|E{ν(i,j)}

)(i) .

I Given an (i , j) such that ν(i ,j) ≥ 1 on the event E{ν(i,j)}, we

define by #
(i ,j)
` (E{ν(i,j)}) to be the number of different strings

of chain type X1 = (i1, i2), ...,Xn = (in−1, in) with the `-th
element being X` = (i , j), and satisfying E{ν(i,j)}.



The finite Markov chain case : Theorem

Theorem (posterior distribution for the finite Markov chain
case)

Given 1 ≤ i , j ≤ N, then we have

P
(
X1 = (i , j)

∣∣E{ν(i,j)}
)

=
1i ,X

1 π0
i∑N

k1=1 1k1,X
1 π0

k1

·
1j ,X

2 ·#(i ,j)
1 (E{ν(i,j)})∑N

k2=1 1k2,X
2 ·#(i ,k2)

1 (E{ν(i,j)})
.



The finite Markov chain case : Soft proof again

I Can be proved in a similar way as the i.i.d. case using
conditional symmetry at the level of sample path trajectories.

I As before we consider the colored sequences, so something like

(1, 2), (2, 1), (1, 1), (1, 2)

{
(1, 2), (2, 1), (1, 1), (1, 2)
(1, 2), (2, 1), (1, 1), (1, 2)

I Again we can “lift” our conditional probability P(•|E{ν(i,j)}) to
the colored space into a new probability P.

I Given the frequency event E{ν(i,j)}, the lifted probability P
charges all possible strings starting from the same Y0 = i with
the same probability.



The finite Markov chain case : Soft proof again

I This yields

P(X1 = (i , j)|E{ν(i,j)},Y1 = i)

∝ 1j ,X
2 ·

ν(i,j)∑
a=1

(Number of colored trajectories starting

from a particularly colored (i , j)) .

I From here we get

P
(
X1 = (i , j)

∣∣E{ν(i,j)},Y1 = i
)

= 1i ,X
1 ·

1j ,X
2 ·#(i ,j)

1 (E{ν(i,j)})∑N
k2=1 1k2,X

2 ·#(i ,k2)
1 (E{ν(i,j)})

.



The finite Markov chain case : Conditional Symmetry idea

I Only one level of conditional symmetry is used in the finite
Markov chain case.

I Conditional Symmetry at the level of sample path
trajectories : As long as E{ν(i,j)} is given, we can permute any

of the realizations of (X1, ...,Xn) in a trajectory without
changing the joint probability, as long as the resulting string
still forms a chain.

I How can we get Conditional Symmetry at the level of
individual observations ?



Ergodic finite Markov chain case : Asymptotic Conditional
Symmetry at the level of individual observations

I Assume pij > 0 for all i , j = 1, 2, ...,N.

I Ergodic Theorem of Markov Chains tells us that for any
µ > 0 we have

lim
n→∞

P
(∣∣∣ν(i ,j)

n
− πipij

∣∣∣ < µ
)

= 1 ,

where πi , i = 1, 2, ...,N is the invariant measure of the
Markov chain {Y`}`≥1 and pij are the transition probabilities.

I This means that for a typical frequency event E{ν(i,j)} we must
have that all ν(i ,j) is large as n is large.



Comparing number of possible trajectories : perturbation
idea

I Let the sequence X1, ...,Xn be long enough, i.e., n is large.

I For any two j1, j2 ∈ {1, 2, ...,N} and j1 6= j2, we want to
compare

card
(i ,j1)
1 (E{ν(i,j)}) =

Number of colored trajectories
starting from a particularly colored (i , j1)

with

card
(i ,j2)
1 (E{ν(i,j)}) =

Number of colored trajectories
starting from a particularly colored (i , j2)



Comparing number of possible trajectories : perturbation
idea

I Since ν(i ,j) is large no matter which (i , j) you pick, the
replacement of (i , j1) by (i , j2) (only works for the colored
case !) at the start of the sequence can be viewed only as a
“perturbation” to the whole configuration.

I So we expect card
(i ,j1)
1 (E{ν(i,j)}) ≈ card

(i ,j2)
1 (E{ν(i,j)}) as n is

large !

I Only at the heuristic level.

I Symmetry at the n→∞ limit since when the process reaches
its invariant measure, everything will look like i.i.d. case.



Comparing number of possible trajectories : Enumerative
Combinatorics

I The above idea is only a heuristic argument.

I For an exact proof, we need some results in enumerative
combinatorics.

I Fix some u, v ∈ {1, 2, ...,N} and consider all possible strings
of chain type X1 = (i1, i2), ...,Xn = (in, in+1) that satisfy the
given frequency event E{ν(i,j)}, such that i1 = u, in+1 = v . The
total number of such strings of chain type is denoted by

N
(n)
uv (E{ν(i,j)}).



Comparing number of possible trajectories : Enumerative
Combinatorics

Theorem (P.Whittle, 1955)

We have

N
(n)
uv (E{ν(i,j)}) =

N∏
i=1

(
N∑
j=1

ν(i ,j)

)
!

N∏
i=1

N∏
j=1

ν(i ,j)!

F ∗vu ,

where F ∗vu is the (v , u)-th cofactor of the matrix F ∗ and 0! = 1.
Here F ∗ = (ν∗ij)1≤i ,j≤N , where

ν∗ij =


1{i=j} −

ν(i ,j)

N∑
j=1

ν(i ,j)

, if
N∑
j=1

ν(i ,j) > 0 ,

1{i=j} , if
N∑
j=1

ν(i ,j) = 0 .



Comparing number of possible trajectories : Intuitions
behind Whittle’s formula

I The original proof of Whittle uses complex analysis techniques
such as series expansions and contour integrals.

I Billingsley (1960, Ann. Stat.) has provided a simple proof
based on recursive relations and generating functions.

I Idea : N
(n)
uv (E{ν(i,j)}) =

N∑
w=1

N
(n−1)
wv (E{ν̃(i,j)}) where ν̃(i ,j) is the

same as ν(i ,j) except that the (i , j)-th element is diminished
by 1.

I Use this recursion to correspond to the algebraic relation
satisfied by matrix cofactors...



The finite ergodic Markov chain case : Hard proof

I Using Whittle’s formula one can prove that when n is large

Number of colored trajectories
starting from a particularly colored (i , j1)

≈ Number of colored trajectories
starting from a particularly colored (i , j2)

I So in the n→∞ limit we do have Conditional Symmetry at
the level of individual observations !



The finite ergodic Markov chain case : Hard proof

I ”Perturbation” intuitions are reflected in calculations.

I Imagine X1 = (i , j), then the sequence
X2 = (j , i3), ...,Xn = (in, in+1) forms a string of chain type
that satisfies the frequency event E{ν̃

(̃i ,̃j)
} with

ν̃
(̃i ,̃j)

=

{
ν

(̃i ,̃j)
, if (̃i , j̃) 6= (i , j) ,

ν
(̃i ,̃j)
− 1 , if (̃i , j̃) = (i , j) .



The finite ergodic Markov chain case : Hard proof

I Apply the Whittle’s formula where

ν̃∗
ĩ j̃

=



1{i=j} −
ν(i,j) − 1

N∑
k=1

ν(i,k) − 1

, if ĩ = i, j̃ = j and
N∑

k=1
ν(i,k) > 1 , ν(i,j) ≥ 1 ,

1{i=̃j} −
ν

(i ,̃j)

N∑
k=1

ν(i,k) − 1

, if ĩ = i, j̃ 6= j and
N∑

k=1
ν(i,k) > 1 , ν(i,j) ≥ 1 ,

1{i=̃j} , if ĩ = i and
N∑

k=1
ν(i,k) = 1 , ν(i,j) = 1 ,

1{̃i=̃j} −
ν

(̃i ,̃j)

N∑
k=1

ν
(̃i,k)

, if ĩ 6= i and
N∑

k=1
ν

(̃i,k)
> 0 ,

1{̃i=̃j} , if ĩ 6= i and
N∑

k=1
ν

(̃i,k)
= 0 .

I For any ε > 0, as n is large we have |ν∗kl − ν̃∗kl | < ε !



The finite ergodic Markov chain case : Result

Theorem (Asymptotic of the posterier probability)

For any ε > 0 small enough, there exist some M ≥ 1 and some
n0 = n0(ε,M) ∈ N such that for any n ≥ n0, there exists a family
of frequency events Eλ{ν(i,j)}

, λ ∈ Λ̃ ⊆ Λ such that

P

⋃
λ∈Λ̃

Eλ{ν(i,j)}

 ≥ 1− ε

M
,

and for each frequency event Eλ{ν(i,j)}
, λ ∈ Λ̃, the posterior

probability of X1 conditioned on Eλ{ν(i,j)}
is close to the

unconditioned probability of X1, i.e. for any 1 ≤ i , j ≤ N we have∣∣∣∣∣P(X1 = (i , j)
∣∣Eλ{ν(i,j)}

)
−

1i ,X
1 π0

i∑N
k1=1 1k1,X

1 π0
k1

· pij

∣∣∣∣∣ < ε .



The “prior” probability structure of the process is not
necessary !

I Think over the whole procedure...

I In the Markov chain case, do we really need to assume the
“Markovian prior” ?

I Not necessarily ! We only need the ex-changeability
(”conditional symmetry”).

I So even if we assume a-priori that the process is i.i.d, by
collecting pair empirical distributions we can still argue that
the conditioned process is Markov chain.

I Can continue this process : triple empirical distributions, ...

I Data-informed probability theory !



More general thoughts...

I The whole rationale of argument can be viewed from a
measure-theoretic point of view.

I The initial P needs not be realistic for a particular system.

I The conditional symmetry that we revealed here is simply a
result of the product structure of the underlying probability
measure defining the process.

I Instead of the “hard” counting argument, can we obtain a
rigorous “soft” perturbative argument for the 2nd level of
combinatorial symmetry ?

I If so, we may extend our idea to the continuous-path
processes.

I Obstacle : Cannot define a uniform measure on the space of
continuous trajectories. Gaussian measure ? Wiener’s
construction ? Discard Probability Measure ?



Thank you for your attention !


