Stochastic Approximations, Diffusion Limit and Small Random Perturbations of Dynamical Systems

– a probabilistic approach to machine learning.

Wenqing Hu. ¹

¹ Department of Mathematics and Statistics, Missouri S&T.
Machine Learning Background: Training DNN via minibatch Stochastic Gradient Descent (SGD).

- Deep Neural Network (DNN). Goal is to solve the following stochastic optimization problem

\[
\min_{x \in \mathbb{R}^d} F(x) \equiv \frac{1}{M} \sum_{i=1}^{M} F_i(x)
\]

where each component \(F_i \) corresponds to the loss function for data point \(i \in \{1, ..., M\} \), and \(x \) is the vector of weights being optimized.
Machine Learning Background: Training DNN via minibatch Stochastic Gradient Descent (SGD).

- **Naive Thinking**: Gradient Descent (GD) updates as
 \[
 x^{(t)} = x^{(t-1)} - \eta \left(\frac{1}{M} \sum_{i=1}^{M} \nabla F_i(x^{(t-1)}) \right).
 \]

- **Learning rate** $\eta > 0$ is usually a small stepsize.
- **Access** of all gradients $\nabla F_i(x^{(t-1)})$ for $i = 1, \ldots, M$ is in general very expensive in large-scale machine learning problems.
Machine Learning Background : Training DNN via minibatch Stochastic Gradient Descent (SGD).

- Let B be the minibatch of prescribed size uniformly sampled from $\{1, \ldots, M\}$, then the objective function can be further written as the expectation of a stochastic function

\[
\frac{1}{M} \sum_{i=1}^{M} F_i(x) = E_B \left(\frac{1}{|B|} \sum_{i \in B} F_i(x) \right) \equiv E_B F(x; B)
\]

- SGD updates as

\[
x^{(t)} = x^{(t-1)} - \eta \left(\frac{1}{|B_t|} \sum_{i \in B_t} \nabla F_i(x^{(t-1)}) \right),
\]

which is the classical mini–batch version of the SGD.
Stochastic Optimization.

- **Stochastic Optimization Problem**

\[
\min_{x \in U \subset \mathbb{R}^d} F(x).
\]

- \(F(x) \equiv \mathbb{E}[F(x; \zeta)] \).

- Index random variable \(\zeta \) follows some prescribed distribution \(\mathcal{D} \).
We target at finding a local minimum point x^* of the expectation function $F(x) \equiv \mathbf{E}[F(x; \zeta)]$:

$$x^* = \arg \min_{x \in U \subset \mathbb{R}^d} \mathbf{E}[F(x; \zeta)] .$$

- Stochastic Gradient Descent (SGD) has iteration:

\[x^{(t)} = x^{(t-1)} - \eta \nabla F(x^{(t-1)}; \zeta_t), \]

where \(\{\zeta_t\} \) are i.i.d. random variables that have the same distribution as \(\zeta \sim D \).
Closer look at SGD.

- **SGD:**
 \[x^{(t)} = x^{(t-1)} - \eta \nabla F(x^{(t-1)}; \zeta_t) . \]

- **F(x) ≡ E F(x; \zeta) in which \(\zeta \sim \mathcal{D} \).**

- **Let**
 \[e_t = \nabla F(x^{(t-1)}; \zeta_t) - \nabla F(x^{(t-1)}) \]

 and we can rewrite the SGD as
 \[x^{(t)} = x^{(t-1)} - \eta (\nabla F(x^{(t-1)}) + e_t) . \]
Diffusion Limit of SGD.

- Stochastic difference equation:

\[
x(t) - x(t-1) = -\eta \nabla F(x^{(t-1)}) - \eta e_t .
\]

- When \(\eta \) is small, we can approximate \(x^{(t)} \) by a diffusion process \(X_t \) driven by the stochastic differential equation

\[
dX_t = -\eta \nabla F(X_t) dt + \eta \sigma(X_t) dW_t , \quad X_0 = x^{(0)} ,
\]

where \(W_t \) is a standard Brownian motion in \(\mathbb{R}^d \) and

\[
\sigma(x)\sigma^T(x) = D(x) .
\]

- The diffusion matrix (noise covariance matrix)

\[
D(x) = \mathbf{E}(\nabla F(x; \zeta) - \nabla F(x))(\nabla F(x; \zeta) - \nabla F(x))^T .
\]
Diffusion Limit of SGD: Justification.

- **Slogan**: Continuous Markov processes are characterized by its local statistical characteristics only in the first and second moments (conditional mean and (co)variance).
- Such an approximation has been justified in the weak sense in many classical literature. It can also be thought of as a normal deviation result (Hu–Li–Li–Liu, 2018).
- Conversely, the discrete iteration can be viewed as a numerical scheme for the diffusion limit X_t.
- In many CS literature people simply refer to the diffusion limit as the SGD algorithm.
Small random perturbations of dynamical systems: gradient flow case.

- Diffusion Limit of SGD:
 \[dX_t = -\eta \nabla F(X_t) dt + \eta \sigma(X_t) dW_t, \quad X_0 = x^{(0)} \]

- Let \(Y_t = X_t/\eta \), then
 \[dY_t = -\nabla F(Y_t) dt + \sqrt{\eta} \sigma(Y_t) dW_t, \quad Y_0 = x^{(0)} \]

(Random perturbations of the gradient flow!)

- In many CS literature people simply refer to the randomly perturbed process \(Y_t \) as the SGD algorithm.
Summary: Probabilistic Approach.

- Stochastic approximation
 - Small learning rate
 - Diffusion limit

- Training algorithm
 - Statistical properties
 - Convergence, generalization, ...

- Diffusion limit
 - Small random perturbations of dynamical systems
SGD as a randomly perturbed gradient flow.

SGD as a randomly perturbed gradient flow:

\[dY_t = -\nabla F(Y_t)dt + \sqrt{\eta} \sigma(Y_t)dW_t, \quad Y_0 = x^{(0)}. \]

\[\sigma(x)\sigma^T(x) = D(x). \]

The diffusion matrix (noise covariance matrix)

\[D(x) = \mathbf{E}(\nabla F(x; \zeta) - \nabla F(x))(\nabla F(x; \zeta) - \nabla F(x))^T. \]
Target Problem 1: Convergence Time.

- Assume isotropic noise $D(x) = I_d$.

- Diffusion Limit:

$$dX_t = -\eta \nabla F(X_t) dt + \eta dW_t, \quad X_0 = x^{(0)}.$$

- Convergence Time = Hitting time

$$\tau^\eta = \inf \{ t \geq 0 : F(X_t) \leq F(x^*) + e \}$$

for some small $e > 0$.

- Asymptotic of $E\tau^\eta$ as $\eta \to 0$?
Target Problem 1: Convergence Time.

- **Random perturbations**: Let $Y_t = X_{t/\eta}$, then

 $$dY_t = -\nabla F(Y_t)dt + \sqrt{\eta}dW_t, \quad Y_0 = x^{(0)}.$$

- **Hitting time**

 $$T^\eta = \inf \{ t \geq 0 : F(Y_t) \leq F(x^*) + e \}$$

 for some small $e > 0$.

- $\tau^\eta = \eta^{-1} T^\eta$.

- Asymptotic of $\mathbf{E} T^\eta$ as $\eta \to 0$?
Approach to Target Problem 1: Where is the difficulty?

Figure 1 – Various critical points and the landscape of F.
Approach to Target Problem 1: Where is the difficulty?

- Algorithm spends most of its time near critical points of loss function F.
Approach to Target Problem 1: Escape from a saddle point.

Figure 2 – Escape from a saddle point.
Approach to Target Problem 1: Chain of saddle points.

Figure 3 – Chain of saddle points.
Approach to Target Problem 1: Sequence of stopping times.

- Standard Markov cycle type argument.
- But the geometry is a little different from the classical arguments for elliptic equilibriums found in Freidlin–Wentzell book.
- \[\mathbb{E} T^n \lesssim \frac{k}{2\gamma_1} \ln(\eta^{-1}) \text{ conditioned upon convergence.} \]
Approach to Target Problem 1: Convergence Time.

- **Theorem**
 (Hu-Li, 2017) (i) For any small $\rho > 0$, with probability at least $1 - \rho$, the diffusion limit X_t of SGD converges to the minimizer x^* for sufficiently small η after passing through all k saddle points O_1, \ldots, O_k;
 (ii) Consider the stopping time τ_η. Then as $\eta \downarrow 0$, conditioned on the above convergence of the diffusion limit X_t of SGD, we have

 $\lim_{\eta \to 0} \frac{E^{\tau_\eta}}{\eta^{-1} \ln \eta^{-1}} \leq \frac{k}{2\gamma_1}$.

Target Problem 2: Effect of batchsize on generalization.

- It is believed that escape from “bad minima” to “good minima” is responsible for good empirical properties under SGD training, e.g. generalization.
- DNN training: How batchsize affect the escape properties from local minimum points?
- Large batch training v.s. small batch training.
- Large–batch methods tend to converge to sharp minimizers of the training and testing functions.
- Small–batch methods consistently converge to flat minimizers.

- Sharp minima → Poorer generalization;
 Flat minima → Better generalization.
Let B be the minibatch of prescribed size uniformly sampled from $\{1, \ldots, M\}$, then the objective function can be further written as the expectation of a stochastic function

$$\frac{1}{M} \sum_{i=1}^{M} F_i(x) = \mathbb{E}_B \left(\frac{1}{|B|} \sum_{i \in B} F_i(x) \right) \equiv \mathbb{E}_B F(x; B).$$

SGD updates as

$$x(t) = x(t-1) - \eta \left(\frac{1}{|B_t|} \sum_{i \in B_t} \nabla F_i(x^{(t-1)}) \right),$$

which is the classical mini–batch version of the SGD.
Approach to Target Problem 2: Relationship between batchsize and the diffusion matrix $D(x)$.

- Relationship between batchsize and the diffusion matrix $D(x)$ (Hu-Li-Li-Liu, 2018).

\[
D(x) = \left(\frac{1}{|B|} - \frac{1}{M} \right) D_0(x),
\]

where

\[
D_0(x) = \frac{1}{M - 1} \sum_{i=1}^{M} (\nabla F_i(x) - \nabla F(x))(\nabla F_i(x) - \nabla F(x))^T.
\]

- Naively, the larger $D(x)$ is, the easier to escape due to injection of the noise.
SGD as a randomly perturbed gradient flow.

- SGD as a randomly perturbed gradient flow:

 $$dY_t = -\nabla F(Y_t)dt + \sqrt{\eta}\sigma(Y_t)dW_t, \quad Y_0 = x^{(0)}.$$

- \(\sigma(x)\sigma^T(x) = D(x)\).

- The diffusion matrix (noise covariance matrix)

 $$D(x) = \mathbf{E}(\nabla F(x; \zeta) - \nabla F(x))(\nabla F(x; \zeta) - \nabla F(x))^T.$$
Approach to Target Problem 2: Escape from basin of attractors via Large Deviations Theory.

- Theorem

(Hu-Li-Li-Liu, 2018) Let U be a basin of attractor such that $O \subset U$ is the only minimum of $F(x)$ and assume that the boundary ∂U of the domain U is smooth so that $\nabla F(x)$, $x \in \partial U$ points to the interior of the boundary of U, then for $x_0 \in U$ we have the following two asymptotic approximations:

$$P(x_0, \partial U) \approx \exp \left(-\frac{1}{\eta} \min_{x \in \partial U} \phi_{QP}^{loc}(x; O) \right),$$

and

$$E_T(x_0, \partial U) \approx \frac{1}{\eta} \exp \left(\frac{1}{\eta} \min_{x \in \partial U} \phi_{QP}^{loc}(x; O) \right).$$
Approach to Target Problem 2: The quasi–potential.

- **The local quasi–potential**

\[
\phi_{\text{loc}}^{\text{QP}}(x; x_0) = \inf_{T > 0} \inf_{\psi(0) = x_0, \psi(T) = x} S_{0,T}(\psi).
\]

- **Action functional (Large Deviations Rate Function)**:

\[
S_{0,T}(\psi) = \begin{cases}
\frac{1}{2} \int_0^T (\dot{\psi}_t + \nabla F(\psi_t))^T D^{-1}(\psi_t)(\dot{\psi}_t + \nabla F(\psi_t)) dt, & \text{if } \psi_t \text{ is abs. cont. } t \in [0, T]; \\
+\infty, & \text{otherwise}.
\end{cases}
\]
Implicit Regularization: It is widely believed that SGD is an implicit regularizer which helps itself to search for a local minimum that is easy to generalize.

How to understand this phenomenon?
Approach to Target Problem 3: Structure of diffusion matrix $D(x)$.

- Covariance structure (diffusion matrix) $D(x)$ depends implicitly on the model architecture:
 \[
 D(x) = E(\nabla F(x; \zeta) - \nabla F(x)) (\nabla F(x; \zeta) - \nabla F(x))^T.
 \]

- Anisotropic Noise v.s. Isotropic Noise.
- $D(x)$ may have very large condition number!
SGD as a randomly perturbed gradient flow.

- SGD as a randomly perturbed gradient flow:
 \[dY_t = -\nabla F(Y_t)dt + \sqrt{\eta}\sigma(Y_t)dW_t, \quad Y_0 = x^{(0)}. \]

- \(\sigma(x)\sigma^T(x) = D(x) \).

- The diffusion matrix (noise covariance matrix)
 \[D(x) = E(\nabla F(x; \zeta) - \nabla F(x))(\nabla F(x; \zeta) - \nabla F(x))^T. \]
Approach to Target Problem 2: Escape from basin of attractors via Large Deviations Theory.

Theorem (Hu-Li-Li-Liu, 2018) Let U be a basin of attractor such that $O \subset U$ is the only minimum of $F(x)$ and assume that the boundary ∂U of the domain U is smooth so that $\nabla F(x), x \in \partial U$ points to the interior of the boundary of U, then for $x_0 \in U$ we have the following two asymptotic

$$P(x_0, \partial U) \asymp \exp \left(-\frac{1}{\eta} \min_{x \in \partial U} \phi_{QP \text{loc}}(x; O) \right),$$

and

$$E_T(x_0, \partial U) \asymp \frac{1}{\eta} \exp \left(\frac{1}{\eta} \min_{x \in \partial U} \phi_{QP \text{loc}}(x; O) \right).$$
Approach to Target Problem 2: The quasi–potential.

- The local quasi–potential

\[
\phi^{QP}_{\text{loc}}(x; x_0) = \inf_{T > 0} \inf_{\psi(0)=x_0, \psi(T)=x} S_{0T}(\psi).
\]

- Action functional (Large Deviations Rate Function):

\[
S_{0T}(\psi) = \begin{cases}
\frac{1}{2} \int_0^T (\dot{\psi}_t + \nabla F(\psi_t))^T D^{-1}(\dot{\psi}_t)(\dot{\psi}_t + \nabla F(\psi_t))dt, \\
+\infty,
\end{cases}
\]

if \(\psi_t\) is abs. cont. \(t \in [0, T]\);
otherwise .
Approach to Target Problem 3 : Relation between the quasi–potential and the diffusion matrix \(D(x) \).

▶ **Theorem**

(Hu-Zhu-Xiong-Huan, 2019) The local quasi–potential \(\phi_{loc}^{QP}(x; x_0) \) is a solution to the Hamilton–Jacobi equation

\[
\frac{1}{2} \left(\nabla \phi_{loc}^{QP}(x; x_0) \right)^T D(x) \nabla \phi_{loc}^{QP}(x; x_0) - \nabla F(x) \cdot \nabla \phi_{loc}^{QP}(x; x_0) = 0 ,
\]

with boundary condition

\[
\phi_{loc}^{QP}(O; x_0) = 0 .
\]
Approach to Target Problem 3: Escape from local minimum point: Isotropic Noise v.s. Anisotropic Noise.

Figure 4 – Escape from local minimum point: Isotropic Noise v.s. Anisotropic Noise.
Target Problem 3: Algorithm’s implicit selection of specific local minima.

- Suppose that $F(x)$ is non-convex and admits several local minimum points.
- Does SGD always select the global minimum of $F(x)$?
SGD as a randomly perturbed gradient flow.

- SGD as a randomly perturbed gradient flow:
 \[
 dY_t = -\nabla F(Y_t)dt + \sqrt{\eta}\sigma(Y_t)dW_t, \quad Y_0 = x^{(0)}.
 \]

- The diffusion matrix (noise covariance matrix)
 \[
 \sigma(x)\sigma^T(x) = D(x).
 \]

- The diffusion matrix (noise covariance matrix)
 \[
 D(x) = \mathbb{E}(\nabla F(x; \zeta) - \nabla F(x))(\nabla F(x; \zeta) - \nabla F(x))^T.
 \]
Variational Inference: Invariant density

\[
\rho^{SS}(x) = \frac{1}{Z(\eta)} \exp \left(-\frac{2}{\eta} \Phi(x) \right).
\]

SGD selects the global minimum of \(\Phi(x) \): \(\rho(x, t) \to \rho^{SS}(x) \) as \(t \to \infty \).

If diffusion matrix \(D(x) = I_d \) is isotropic, then \(\Phi(x) \propto F(x) \).

Anisotropic noise is common!

So in general \(\Phi(x) \neq F(x) \).
Approach to Target Problem 3: Variational Inference via Large Deviation Theory.

- Large Deviation Theory provides another way to express the invariant density

\[\rho^{SS}(x) \asymp \exp \left(-\frac{1}{\eta} \phi^{QP}(x) \right) . \]

- (global) quasi-potential: \(\phi^{QP}(x) \).
Approach to Target Problem 3: Variational Inference via Large Deviation Theory.

- **Theorem**

 (Hu-Zhu-Xiong-Huan, 2019) \(\text{SGD selects the global minimum } x^* \) of \(\phi^{QP}(x) \) such that \(\phi^{QP}(x^*) = 0 \).
The (global) quasi-potential $\phi_{QP}(x)$ can be calculated from the local quasi-potential $\phi_{QP}^{loc}(x; x_0)$.

We have seen that the local quasi-potential $\phi_{QP}^{loc}(x; x_0)$ depends on the diffusion matrix $D(x)$ via the Hamilton-Jacobi equation.

Markov chain on local minimum points (Freidlin–Wentzell theory).
Approach to Target Problem 3: Implicit regularization via covariance structure.

Figure 5 – Implicit regularization via covariance structure. The loss function is symmetric with respect to two local minima \((-2, 0)\) and \((2, 0)\). Left: Process starts from \((-2, 0)\), anisotropic noise in the potential well; Right: Process starts from \((2, 0)\), isotropic noise in the potential well. SGD tends to select \((2, 0)\).
Summary: Probabilistic Approach.

- Stochastic approximation
- Small learning rate
- Diffusion limit
- Training algorithm
- Statistical properties of learning model
 (convergence, generalization, ...)
- Small random perturbations of dynamical systems
Stochastic Approximation: Stochastic heavy–ball method.

\[
\begin{align*}
\min_{x \in \mathbb{R}^d} f(x) .
\end{align*}
\]

“heavy ball method” (B.Polyak 1964)

\[
\begin{align*}
\left\{ \begin{array}{l}
x_t &= x_{t-1} + \sqrt{s}v_t , \\
v_t &= (1 - \alpha \sqrt{s})v_{t-1} - \sqrt{s} \nabla_X f (x_{t-1}) , \\
x_0, v_0 &\in \mathbb{R}^d .
\end{array} \right.
\]

Stochastic heavy ball method:

\[
\begin{align*}
\left\{ \begin{array}{l}
x_t &= x_{t-1} + \sqrt{s}v_t , \\
v_t &= (1 - \alpha \sqrt{s})v_{t-1} - \sqrt{s} \nabla_X f (x_{t-1}; \zeta_t) , \\
x_0, v_0 &\in \mathbb{R}^d .
\end{array} \right.
\]
Diffusion Limit of Stochastic heavy–ball method.

Diffusion limit of the stochastic heavy ball method:

\[
\begin{align*}
 d\mathbf{x}(t) &= \sqrt{s}v(t)dt, \\
 dv(t) &= -\sqrt{s\alpha}v(t)dt - \sqrt{s}\nabla f(\mathbf{x}(t)) + \sqrt{s}\sigma(\mathbf{x}(t))dW_t, \\
 \mathbf{x}(0), v(0) &\in \mathbb{R}^d.
\end{align*}
\]
Small random perturbations of dynamical systems: dissipative Hamiltonian system.

- Small random perturbations of dissipated Hamiltonian system:

\[
\begin{align*}
 &dX_t^\varepsilon = V_t^\varepsilon \, dt; \\
 &dV_t^\varepsilon = (-\alpha V_t^\varepsilon - \nabla X f(X_t^\varepsilon)) \, dt + \varepsilon \sigma(X_t^\varepsilon) \, dW_t, \\
 &X_0^\varepsilon, V_0^\varepsilon \in \mathbb{R}^d.
\end{align*}
\]

- Hu-Li-Su, 2017 and work in progress.
Many further interesting directions at the interplay of probability and data science ...

- Escape from saddle points for anisotropic noise.
- Can the program on Hamilton–Jacobi equation be carried to specific deep neural network structures?
- Many more applied problems in collaborations with CS/ECE/ORIE people...
Thank you for your attention!