Class Today

• Print notes and examples
• Fluid Pressure
 – Defined
 – Resultant force on flat surface
 – Resultant force on curved surface
• Example Problems
• Group Work Time
Fluid Pressure Defined

- **Pressure** – Force distributed over an area. Measured in lb/ft^2 or kN/m^2

- **Fluid pressure**
 - Creates a pressure that is the same in all directions.
 - Varies linearly with depth.
 - Acts perpendicular to a surface.
Fluid Pressure Defined

Pressure at a depth is calculated by:

\[p = \gamma z = \rho g z \]

Where

- \(\gamma \) = specific weight
- \(\rho \) = mass density
- \(g \) = acceleration due to gravity
- \(z \) = depth from the liquid surface
Resultant Force on Flat Surface

Solve directly for the perpendicular resultant force:

\[F_{\text{perp}} = \gamma \bar{z} A \]

Where

\(\bar{z} \) = dist. below liquid surface to centroid of flat plate

\(A \) = Surface area of flat plate
Resultant Force on Flat Surface

Solve directly for the perpendicular resultant force:

\[F_{\text{perp}} = (w_1 + w_2)(1/2)(L) \]

Where

\(w = bp \) (pressure reduced to a linear distributed load)

\(b = \) width of flat plate measured into page

\(L = \) Length of flat surface affected by distributed load
Resultant Force on Curved Surface

Solve for vertical and horizontal components of resultant force and THEN find resultant, if necessary.

\[F_v = \gamma V \]

Where

\(V = \) volume of liquid directly above curved surface

\[F_h = F_{perp} \]