Chapter 7. Symmetric Matrices and Quadratic Forms

7.1 Diagonalization of Symmetric Matrices
Schur Triangular Form.

Definition. A matrix \(P \in \mathbb{C}^{n \times n} \) is unitary if \(P^*P = I_n \).

Schur Factorization. Any \(A \in \mathbb{C}^{n \times n} \) can be written in the form \(A = PUP^* \) where \(P \in \mathbb{C}^{n \times n} \) is unitary and \(U \in \mathbb{C}^{n \times n} \) is upper triangular.

This can be proven by induction. The case \(n = 1 \) is clear.

Now suppose the result holds for \((n-1) \times (n-1) \) matrices and let \(A \in \mathbb{C}^{n \times n} \).

Let \(\{\lambda_1, v_1\} \) be an eigenvalue/eigenvector pair for \(A \) with \(\|v_1\| = 1 \).

Extend \(v_1 \) to an orthonormal basis \(\{v_1, \ldots, v_n\} \) for \(\mathbb{C}^n \) and set \(P_1 = [v_1, \cdots, v_n] \).

Schur Factorization. (cont.) Note \(P_1^* = P_1^{-1} \). we may write

\[
AP_1 = P_1 \begin{bmatrix} \lambda_1 & w \\
0 & M \end{bmatrix}, \quad M \in \mathbb{C}^{(n-1) \times (n-1)}, \quad w \in \mathbb{C}^{1 \times (n-1)}.
\]

By assumption, we can write \(M = QU_0Q^* \), \(Q \) unitary and \(U \) is upper triangular.

Now set \(P_2 = \begin{bmatrix} 1 & 0 \\
0 & Q \end{bmatrix} \), \(P = P_1P_2 \).

Then \(P \) is unitary (check!) and

\[
P^*AP = P_2^* \begin{bmatrix} \lambda_1 & w \\
0 & M \end{bmatrix} P_2 = \begin{bmatrix} \lambda & wQ \\
0 & U_0 \end{bmatrix},
\]

which completes the proof.
Schur Triangular Form.

This result shows that every $A \in \mathbb{C}^{n \times n}$ is similar to an upper triangular matrix $U \in \mathbb{C}^{n \times n}$ via a change of coordinate matrix $P \in \mathbb{C}^{n \times n}$ that is unitary.

That is: every matrix A is unitarily similar to an upper triangular matrix.

Definition. (Normal matrices) A matrix $A \in \mathbb{C}^{n \times n}$ is normal if

$$A^*A = AA^*.$$

Examples of normal matrices.

- If $A^* = A$ (i.e. A is hermitian), then A is normal.
- If $A \in \mathbb{R}^{n \times n}$ is symmetric ($A = A^T$), then A is normal.
- If $A^* = -A$ (skew-adjoint), then A is normal.
- If A is unitary ($A^*A = I_n$), then A is normal.
Theorem. If \(A \in \mathbb{C}^{n \times n} \) is normal and \((\lambda, v)\) is an eigenvalue/eigenvector pair, then \(\{\bar{\lambda}, v\}\) is an eigenvalue/eigenvector pair for \(A^*\).

Indeed,

\[
\| (A - \lambda I)v \|^2 = \| (A - \lambda I)v \|^* (A - \lambda I)v \\
= v^* (A^* - \bar{\lambda}I) (A - \lambda I)v \\
= v^* (A - \lambda I) (A^* - \bar{\lambda}I) v \\
= \| (A^* - \bar{\lambda}I)v \|^2.
\]
Spectral Theorem. (cont.)

Now suppose $A \in \mathbb{C}^{n \times n}$ is normal, i.e. $AA^* = A^*A$. We begin by writing the Schur factorization of A, i.e.

$$A = PUP^*, \quad P = [v_1 \cdots v_n],$$

where P is unitary and $U = [c_{ij}]$ is upper triangular.

First note that $AP = PU$ implies $Av_1 = c_{11}v_1$, and hence (since A is normal) $A^*v_1 = \bar{c}_{11}v_1$.

However, $A^*P = PU^*$, so that

$$\bar{c}_{11}v_1 = A^*v_1 = \bar{c}_{11}v_1 + \cdots + \bar{c}_{1n}v_n$$

By independence of v_2, \ldots, v_n, we deduce $c_{1j} = 0$ for $j = 2, \ldots, n$.

We have shown

$$U = \begin{bmatrix} c_{11} & 0 \\ 0 & \tilde{U} \end{bmatrix},$$

where $\tilde{U} \in \mathbb{C}^{(n-1) \times (n-1)}$ is upper triangular.

But now $AP = PU$ gives $Av_2 = c_{22}v_2$, and arguing as above we deduce $c_{2j} = 0$ for $j = 3, \ldots, n$.

Continuing in this way, we deduce that U is diagonal. □
Spectral Theorem. (cont.)

To summarize, $A \in \mathbb{C}^{n \times n}$ is normal ($AA^* = A^*A$) if and only if it can be written as $A = PDP^*$ where $P = [v_1 \cdots v_n]$ is unitary and $D = \text{diag}(\lambda_1, \cdots, \lambda_n)$. Note

- P unitary means $P^{-1} = P^*$
- A is unitarily similar to a diagonal matrix
- $\{\lambda_j, v_j\}$ are eigenvalue-eigenvector pairs for A

Theorem. (Spectral Theorem for Self-Adjoint Matrices)

- A matrix $A \in \mathbb{C}^{n \times n}$ is self-adjoint ($A = A^*$) if and only if it is unitarily similar to a real diagonal matrix, i.e. $A = PDP^*$ for some unitary $P \in \mathbb{C}^{n \times n}$ and some diagonal $D \in \mathbb{R}^{n \times n}$.

Indeed, this follows from the spectral theorem for normal matrices. In particular,

$$PDP^* = A = A^* = PD^*P \implies D = D^*,$$

which implies that $D \in \mathbb{R}^{n \times n}$.

Note this implies that self-adjoint matrices have real eigenvalues.
Eigenvectors and eigenvalues for normal matrices. Suppose A is a normal matrix.

- Eigenvectors associated to different eigenvalues are orthogonal:

 $$v_1 \cdot Av_2 = \lambda_2 v_1 \cdot v_2,$$

 $$v_1 \cdot Av_2 = A^* v_1 \cdot v_2 = \lambda_1 v_1 \cdot v_2.$$

- If the eigenvalues are all real, then A is self-adjoint. (This follows from the spectral theorem.)

Spectral decomposition. If $A \in \mathbb{C}^{n \times n}$ is a normal matrix, then we may write $A = PDP^*$ as above. In particular,

$$A = \lambda_1 v_1 v_1^* + \cdots + \lambda_n v_n v_n^*$$

Recall that

$$\frac{1}{\|v_k\|^2} v_k v_k^* = v_k v_k^*$$

is the projection matrix for the subspace $V_k = \text{span}\{v_k\}$.

Thus, a normal matrix can be written as the sum of scalar multiples of projections on to the eigenspaces.
Chapter 7. Symmetric Matrices and Quadratic Forms

7.2 Quadratic Forms

Definition. Let \(A \in \mathbb{C}^{n \times n} \) be a self-adjoint matrix. The function
\[
Q(x) = x^* Ax, \quad x \in \mathbb{C}^n
\]
is called a quadratic form. Using self-adjointness of \(A \), one finds
\[
Q : \mathbb{C}^n \rightarrow \mathbb{R}.
\]

- If \(Q(x) > 0 \) for all \(x \neq 0 \), we call \(Q \) positive definite.
- If \(Q(x) \geq 0 \) for all \(x \neq 0 \), we call \(Q \) positive semidefinite.
- We define negative definite, negative semidefinite similarly.
- We call \(Q \) indefinite if it attains both positive and negative values.
Characteristic forms. Expanding the inner product, we find that

\[x^*Ax = \sum_{j=1}^{n} a_{jj}|x_j|^2 + 2 \sum_{i<j} \text{Re}(a_{ij}x_i x_j). \]

For \(A \in \mathbb{R}^{n \times n} \) and \(x \in \mathbb{R}^n \), this reduces to

\[x^TAx = \sum_{j=1}^{n} a_{jj}x_j^2 + 2 \sum_{i<j} a_{ij}x_i x_j. \]

Example.

\[x^T \begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & -5 \\ 3 & -5 & -6 \end{bmatrix} x = x_1^2 + 4x_2^2 - 6x_3^2 - 4x_1x_2 + 6x_1x_3 - 10x_2x_3. \]

Characterization of definiteness. Let \(A \in \mathbb{C}^{n \times n} \), \(Q(x) = x^*Ax \).

- There exists an orthonormal basis \(B = \{v_1, \ldots, v_n\} \) s.t.
 - \(A = PDP^* \), where \(P = [v_1 \cdots v_n] \) and
 - \(D = \text{diag}(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^{n \times n} \).

Then, with \(y = P^{-1}x \)

\[Q(x) = x^*PDP^*x = (P^{-1}x)^*DP^{-1}x = y^*Dy \]

\[= \lambda_1|y_1|^2 + \cdots + \lambda_n|y_n|^2. \]

We conclude:

Theorem. If \(A \in \mathbb{C}^{n \times n} \) is self-adjoint, then \(Q(x) = x^*Ax \) is positive definite if and only if the eigenvalues of \(A \) are all positive.

(Similarly for negative definite, or semidefinite...)
Quadratic forms and conic sections. The equation

\[
ax_1^2 + 2bx_1x_2 + cx_2^2 + dx_1 + ex_2 = f
\]

can be written as

\[
x^T Ax + [d \ e] x = f, \quad A = A^T = \begin{bmatrix} a & b \\ b & c \end{bmatrix}.
\]

By the spectral theorem, there is a basis of eigenvectors \(\{v_1, v_2\} \) that diagonalizes \(A \). That is,

\[
A = PDP^T, \quad P = [v_1 \ v_2], \quad D = \text{diag}(\lambda_1, \lambda_2).
\]

Writing \(y = P^Tx \), the equation becomes

\[
y^T Dy + [d' \ e'] y = f, \quad [d' \ e'] = [d \ e] P,
\]
i.e.

\[
\lambda_1 y_1^2 + \lambda_2 y_2^2 + d'y_1 + e'y_2 = f.
\]

Principle axis theorem. The change of variables \(y = P^Tx \) gives

\[
x^T Ax + [d \ e] x = f \iff y^T Dy + [d' \ e'] y = f.
\]

The nature of the conic section can be understood through the quadratic form \(y^T Dy \).

Note that this transforms \(x^*Ax \) into a quadratic form \(y^*Dy \) with no cross-product term.
Example. Consider $x_1^2 - 6x_1x_2 + 9x_2^2$. This corresponds to

$$A = \begin{bmatrix} 1 & -3 \\ -3 & 9 \end{bmatrix}.$$

The eigenvalues are $\lambda = 10, 0$ (the quadratic form is positive definite), with eigenspaces

$$E_0 = \text{span}([3, 1]^T), \quad E_{10} = \text{span}([1, -3]^T).$$

Consequently $A = PDPT$, with

$$P = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}.$$

Writing $y = P^Tx$ leads to the quadratic form

$$10y_1^2 + 0y_2^2 = 10y_1^2.$$

Example. (cont.) Consider the conic section described by

$$x_1^2 - 6x_1x_2 + 9x_2^2 + 3x_1 + x_2 = 1.$$

This can be written $x^TAx + [3 \ 1]^T = 1$. Continuing from above, this is equivalent to

$$10y_1^2 + [3 \ 1]P^Ty = 10y_1^2 + \sqrt{10}y_2 = 1,$$

i.e. $y_2 = \frac{\sqrt{10}y_1}{10} - \sqrt{10}y_1^2$.

In the y_1y_2 plane, the conic section is a parabola. To go from x coordinates to y coordinates, we apply P, which is a rotation.
Recall: A self-adjoint matrix $A \in \mathbb{C}^{n \times n}$ is unitarily similar to a real diagonal matrix. Consequently, we can write

$$A = \lambda_1 u_1 u_1^* + \cdots + \lambda_n u_n u_n^*,$$

where $\lambda_n \leq \cdots \leq \lambda_1 \in \mathbb{R}$ and $\{u_1, \cdots, u_n\}$ is an orthonormal basis.
Quadraic forms and boundedness. Let A be self-adjoint. Continuing from above,

$$x^*Ax = \lambda_1 x^* u_1 (u_1^* x) + \cdots + \lambda_n x^* u_n (u_n^* x)$$

$$= \lambda_1 |u_1^* x|^2 + \cdots + \lambda_n |u_n^* x|^2.$$

Since $\{u_1, \ldots, u_n\}$ is an orthonormal basis,

$$x = (u_1^* x) u_1 + \cdots + (u_n^* x) u_n \implies \|x\|^2 = |u_1^* x|^2 + \cdots + |u_n^* x|^2.$$

We deduce

$$\lambda_n \|x\|^2 \leq x^* Ax \leq \lambda_1 \|x\|^2.$$

Rayleigh principle. We continue with A as above and set

$$\Omega_0 = \{0\}, \quad \Omega_k := \text{span}\{u_1, \ldots, u_k\}.$$

Then for $x \in \Omega_{k-1}^\perp$ we have

$$\|x\|^2 = |u_k^* x|^2 + \cdots + |u_n^* x|^2,$$

$$x^* Ax = \lambda_k |u_k^* x|^2 + \cdots + \lambda_n |u_n^* x|^2.$$

Thus (using $\lambda_n \leq \cdots \leq \lambda_1$)

$$\lambda_n \|x\|^2 \leq x^* Ax \leq \lambda_k \|x\|^2.$$

$$\implies \lambda_n \leq x^* Ax \leq \lambda_k \quad \text{for all } x \in \Omega_{k-1}^\perp \quad \text{with } \|x\| = 1.$$

But since $u_n^* Au_n = \lambda_n$ and $u_k^* Au_k = \lambda_k$, we deduce the Rayleigh principle: for $k = 1, \ldots, n$,

$$\min_{\|x\|=1} x^* Ax = \min_{\|x\|=1, \ x \in \Omega_{k-1}^\perp} x^* Ax = \lambda_n,$$

$$\max_{\|x\|=1} x^* Ax = \lambda_k.$$
Example. Let \(Q(x_1, x_2) = 3x_1^2 + 9x_2^2 + 8x_1x_2, \) which corresponds to
\[
A = \begin{bmatrix} 3 & 4 \\ 4 & 9 \end{bmatrix}.
\]
The eigenvalues are \(\lambda_1 = 11 \) and \(\lambda_1 = 2, \) with
\[
\Omega_1 = \text{nul}(A - 11I) = \text{span}\{[1, 2]^T\},
\]
\[
\Omega_1^\perp = \text{nul}(A - I) = \text{span}\{[-2, 1]^T\}.
\]
Note
\[
\min_{\|x\| = 1} x^*Ax = \lambda_2 = 1, \quad \max_{\|x\| = 1} x^*Ax = \lambda_1 = 11,
\]
By the Rayleigh principle, the minimum is obtained on \(\Omega_1^\perp, \) while
the maximum restricted to this set is also equal to \(\lambda_2 = 1. \)

Example. (cont.)
The contour curves \(Q(x_1, x_2) = \text{const} \) are ellipses in the \(x_1x_2 \) plane.

Using the change of variables \(y = P^*x, \) where
\[
P = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}
\]
is a rotation by \(\theta \sim 63.44^\circ, \) one finds \(Q(x) = 11y_1^2 + y_2^2. \)

Thus the contour curves \(Q(x_1, x_2) = \text{const} \) are obtained by
rotating the contour curves of \(11x_1^2 + x_2^2 = \text{const} \) by \(\theta. \)
Singular values. For a matrix \(A \in \mathbb{C}^{n \times p} \), the matrix \(A^*A \in \mathbb{C}^{p \times p} \) is self-adjoint. By the spectral theorem, there exists an orthonormal basis \(B = \{v_1, \ldots, v_p\} \) for \(\mathbb{C}^p \) consisting of eigenvectors for \(A^*A \) with real eigenvalues \(\lambda_1 \geq \cdots \geq \lambda_p \).

Noting that \(x^*(A^*A)x = (Ax)^*Ax = \|Ax\|^2 \geq 0 \) for all \(x \), we deduce
\[
\lambda_j = \lambda_j \|v_j\|^2 = v_j^*(A^*A)v_j \geq 0 \quad \text{for all} \quad j.
\]

Definition. With the notation above, we call \(\sigma_j := \sqrt{\lambda_j} \) the singular values of \(A \).

- If \(\text{rank} A = r \), then \(\sigma_{r+1} = \cdots = \sigma_p = 0 \).
- In this case \(\{v_1, \ldots, v_r\} \) is an orthonormal basis for \(\text{col}(A^*) \), while \(\{v_{r+1}, \ldots, v_p\} \) is an orthonormal basis for \(\text{nul}(A) \).
Singular Value Decomposition. Let $A \in \mathbb{C}^{n \times p}$ with rank $A = r$ as above. The vectors

$$
\mathbf{u}_j = \frac{1}{\sigma_j} A \mathbf{v}_j, \quad j = 1, \ldots, r
$$

form an orthonormal basis for $\text{col}(A)$. Indeed,

$$
\mathbf{u}_i \cdot \mathbf{u}_j = \frac{\mathbf{v}_i^*(A^* A) \mathbf{v}_j}{\sigma_i \sigma_j} = \begin{cases} 0 & i \neq j \\ 1 & i = 1. \end{cases}
$$

Next let $\{\mathbf{u}_{r+1}, \ldots, \mathbf{u}_n\}$ be an orthonormal basis for $\text{col}(A)^\perp$. Defining the unitary matrices $V = [\mathbf{v}_1 \cdots \mathbf{v}_p]$ and $U = [\mathbf{u}_1 \cdots \mathbf{u}_n],$

$$
AV = U \Sigma, \quad \Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{C}^{n \times p}, \quad D = \text{diag}(\sigma_1, \ldots, \sigma_r).
$$

We call $A = U \Sigma V^*$ the singular value decomposition of $A \in \mathbb{C}^{n \times p}$.

SVD and linear transformations. Let $T(x) = Ax$ be a linear transformation $T : \mathbb{C}^p \rightarrow \mathbb{C}^n$.

Writing $A = U \Sigma V^*$ as above, we have $B = \{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ and $C = \{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ are orthonormal bases for \mathbb{C}^p and \mathbb{C}^n. Then

$$
U^*(Ax) = \Sigma(V^*x) \implies [T(x)]_C = \Sigma[x]_B,
$$

i.e. there are orthonormal bases for \mathbb{C}^p and \mathbb{C}^n s.t. T can be represented in terms of the matrix Σ.
Transformations of \mathbb{R}^2. If $T : \mathbb{R}^2 \to \mathbb{R}^2$ is given by $T(x) = Ax$, then there exist unitary matrices U, V so that $A = UDV^T$ for $D = \text{diag}(\sigma_1, \sigma_2)$.

Unitary matrices in $\mathbb{R}^{2 \times 2}$ represent rotations/reflections of the plane.

Every linear transformation of the plane is the composition of three transformations: a rotation/reflection, a scaling transformation, and a rotation/reflection.

Moore–Penrose inverse of $A \in \mathbb{C}^{n \times p}$. Write $V_r = [v_1 \cdots v_r] \in \mathbb{C}^{p \times r}$ and $U_r = [u_1 \cdots u_r] \in \mathbb{C}^{n \times r}$. Then

$$A = U \Sigma V^* = U_r D V_r^*$$

represents a reduced SVD for A.

Definition. The **Moore–Penrose pseudo inverse** of $A \in \mathbb{C}^{n \times p}$ is defined by

$$A^+ = V_r D^{-1} U_r^* \in \mathbb{C}^{p \times n}.$$

- $AA^+ = U_r U_r^* = \text{proj}_{\text{col}(A)} \in \mathbb{C}^{n \times n}$
- $A^+ A = V_r V_r^* = \text{proj}_{\text{col}(A^+)} \in \mathbb{C}^{p \times p}$
- $AA^+ A = A$, $A^+ AA^+ = A^+$,
- $A^+ = A^{-1}$ whenever $r = p = n$.
Least squares solutions for $A \in \mathbb{C}^{n \times p}$. Recall that the least squares solutions of $Ax = b$ are the solutions to the normal system $A^*Ax = A^*b$. Equivalently, they are solutions to $Ax = \text{proj}_{\text{col}(A)}b$.

When $\text{rank}(A^*A) = r < p$, there are infinitely many least squares solutions.

Note that since $AA^* = \text{proj}_{\text{col}(A)}$, we have

$$AA^*b = \text{proj}_{\text{col}(A)}(b) \implies A^*b \text{ is a least squares solution.}$$

On the other hand, using $A^*b \in \text{col}(A^*)$, we have for any other least squares solution \hat{x},

$$A\hat{x} - AA^*b = 0 \implies \hat{x} - A^*b \in \text{nul}(A) = \text{col}(A^*)^\perp,$$

so $A^*b \perp \hat{x} - A^*b$. Consequently,

$$||\hat{x}||^2 = ||A^*b||^2 + ||\hat{x} - A^*b||^2.$$

Thus A^*b is the least squares solution of smallest length.

Four fundamental subspaces. Let $A \in \mathbb{C}^{n \times p}$. Consider

- $\text{col}(A)$, $\text{col}(A)^\perp = \text{nul}(A^*)$
- $\text{col}(A^*) = \text{row}(\bar{A})$, $\text{col}(A^*)^\perp = \text{nul}(A)$

Recall the SVD of $A \in \mathbb{C}^{n \times p}$ with $\text{rank}(A) = r$ yields an orthonormal basis $\{v_1, \ldots, v_p\}$ consisting of eigenvectors of A^*A, and an orthonormal basis $\{u_1, \ldots, u_r\}$ obtained by completing

$\{u_1, \ldots, u_r\}$, where $u_j = \frac{1}{\sigma_j}Av_j$.

Since $A^*Av_j = \lambda_j v_j$, $Av_j = \sigma_j u_j$:

- $\{v_1, \ldots, v_r\}$ is an orthonormal basis for $\text{col}(A^*A) = \text{col}(A^*) = \text{row}(\bar{A})$
- $\{v_{r+1}, \ldots, v_p\}$ is an orthonormal basis for $\text{col}(A^*)^\perp = \text{nul}(A)$
- $\{u_1, \ldots, u_r\}$ is an orthonormal basis for $\text{col}(A)$
- $\{u_{r+1}, \ldots, u_n\}$ is an orthonormal basis for $\text{col}(A)^\perp = \text{nul}(A^*)$
Review: Matrix Factorizations

Let $A \in \mathbb{C}^{n \times p}$.

- **Permutated LU factorization:** $PA = LU$, where $P \in \mathbb{C}^{n \times n}$ is an invertible permutation matrix, $L \in \mathbb{C}^{n \times n}$ is invertible and lower triangular, and $U \in \mathbb{C}^{n \times p}$ is upper triangular.

- **QR factorization:** $A = QR$, where the columns of $Q \in \mathbb{C}^{n \times p}$ are generated from the columns of A by Gram-Schmidt and $R \in \mathbb{C}^{p \times p}$ is upper triangular.

- **SVD:** $A = U\Sigma V^*$, where $U \in \mathbb{C}^{n \times n}$, $V \in \mathbb{C}^{p \times p}$ are unitary,

 $$
 D = \begin{bmatrix}
 D & 0 \\
 0 & 0 \\
 \end{bmatrix} \in \mathbb{C}^{n \times p}, \quad D = \text{diag}(\sigma_1, \ldots, \sigma_r).
 $$

 For $A \in \mathbb{C}^{n \times n}$:

- **Schur factorization:** $A = PUP^*$ where P is unitary and U is upper triangular.

- **Spectral theorems:** $A = PDP^*$, where P is unitary and D is diagonal. This holds if and only if A is normal. The matrix D is real if and only if A is self-adjoint.