Applications of PT Symmetry and Pseudo-Hermiticity: From the Imaginary Cubic Perturbation to Elementary Particle Physics

PHHQP-12 Conference 2013
Koc University

[Thanks to the Organizers for Recognizing the Need to Have an Event on Fundamental Physics!]

U. D. Jentschura
Missouri University of Science and Technology
Rolla, Missouri

Also:
MTA-DE Particle Physics Research Group,
Debrecen, Hungary
In exploring nature, a possible starting point is the beauty of mathematics!

British physicist: He/she will do the right approximations, identify the essential degrees of freedom and arrive at a concise formula to describe the phenomenon.

German physicist: He/she will dig to the bottom of things using an apparatus that he/she crafted and wielded together with his/her own hands.

French physicist: He/she will start from mathematics, then explore the beauty of mathematics, and if, in the end, there is an application to be found somewhere, it is purely accidental but welcome.
I never thought that I would ever work on superluminal physics
[superluminal: faster than light]
However, then I made some observations:

[1.] The superluminal Dirac Hamiltonian,
whose eigenstates satisfy the dispersion
\[E^2 = p^2 - m^2, \]
is pseudo-Hermitian (a PHHQP topic).

[2.] One can solve the superluminal Dirac equation in the helicity basis. The results have
a conspicuously simple and compact mathematical structure.

[3.] There exist sum rules fulfilled by the solutions [2.],
which allow for a calculation of the
field-theoretical propagator of the superluminal Dirac field.

[4.] The results [1.]-[3.] are independent of the OPERA
experiment and hold for infinitesimally superluminal
neutrinos. They are obtained within the “French” approach to physics.
Unified Treatment of Even and Odd Anharmonic Oscillators of Arbitrary Degree

Ulrich D. Jentschura,1,2,* Andrey Surzhykov,2,3 and Jean Zinn-Justin4

1Department of Physics, Missouri University of Science and Technology, Rolla Missouri 65409-0640, USA
2Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg, Germany
3Physikalisches Institut der Universität, Philosophenweg 12, 69120 Heidelberg, Germany
4CEA, IRFU, and Institut de Physique Théorique, Centre de Saclay, 91191 Gif-Sur-Yvette, France
(Received 3 August 2008; published 8 January 2009)

We present a unified treatment, including higher-order corrections, of anharmonic oscillators of arbitrary even and odd degree. Our approach is based on a dispersion relation which takes advantage of the PT symmetry of odd potentials for imaginary coupling parameter, and of generalized quantization conditions which take into account instanton contributions. We find a number of explicit new results, including the general behavior of large-order perturbation theory for arbitrary levels of odd anharmonic oscillators, and subleading corrections to the decay width of excited states for odd potentials, which are numerically significant.

DOI: 10.1103/PhysRevLett.102.011601

PACS numbers: 11.10.Jj, 11.15.Bt, 11.25.Db

\[h_M(g) = -\frac{1}{2} \frac{\partial^2}{\partial q^2} + \frac{1}{2} q^2 + \sqrt{g} q^M. \quad (M \text{ odd}). \]

Negative g: PT Symmetric

The PT symmetry for purely imaginary coupling leads to the following dispersion relation

\[\epsilon_n^{(M)}(g) = n + \frac{1}{2} + \frac{g}{\pi} \int_0^\infty ds \frac{\text{Im} \epsilon_n^{(M)}(s + i0)}{s(s^2-g)}. \]
Dirac Hamiltonians

Hermitian Hamiltonian, Subluminal

\[H^{(t)} = \vec{\alpha} \cdot \vec{p} + \beta m_1 + i \beta \gamma^5 m_2. \]

\[E = \sqrt{\vec{p}^2 + m_1^2 + m_2^2}. \]

\[H^{(t)} = \left(H^{(t)} \right)^+, \]

\[H^{(t)} = \text{Hermitian operator}. \]

\[H' = \vec{\alpha} \cdot \vec{p} + i \beta m_1 + \beta \gamma^5 m_2, \]

\[E = \sqrt{\vec{p}^2 - m_1^2 - m_2^2}. \]

\[H' = \gamma^5 H' + \gamma^5. \]

Tachyonic and Tardyonic Dispersion Relations

Tachyonic and Tardyonic Dispersion Relations

\mathcal{PT}-symmetry in honeycomb photonic lattices

Alexander Szameit, Mikael C. Rechtsman, Omri Bahat-Treidel, and Mordechai Segev

Physics Department and Solid State Institute, Technion, 32000 Haifa, Israel

(Received 21 April 2011; published 19 August 2011)

We apply gain and loss to honeycomb photonic lattices and show that the dispersion relation is identical to tachyons—particles with imaginary mass that travel faster than the speed of light. This is accompanied by \mathcal{PT}-symmetry breaking in this structure. We further show that the \mathcal{PT}-symmetry can be restored by deforming the lattice.

DOI: [10.1103/PhysRevA.84.021806](http://dx.doi.org/10.1103/PhysRevA.84.021806) PACS number(s): 42.25.-p, 42.82.Et

![Massless](image1.png) ![Tardyonic](image2.png) ![Tachyonic](image3.png)

Massless **Tardyonic** **Tachyonic**
Nothing can go faster than light... in vacuum... if it carries energy or information... if it started out slower than light

c = 299,792,458 m/sec
1 light-second per second
“Autobahn Paradox”: A left-handed, massive neutrino (traveling slower than light) appears right-handed once you pass it on a highway.
Wheeler said that the neutrino has to be massless, beyond doubt, because only strictly massless spin-1/2 particles find a convenient representation in the helicity basis (Weyl fermions).

Wheeler even discouraged experimentalists who intended to measure the neutrino mass. The original standard model (SM) predicted massless neutrinos; the observation of neutrino oscillations implies $SM \rightarrow SM++$.
Four possible ways to resolve the “autobahn paradox”:

[1.] The neutrino is strictly massless (Weyl fermion).
 But: We have neutrino oscillations.

[2.] The neutrino is its own antiparticle (Majorana fermion).

[3.] The neutrino is an ever so slightly superluminal Dirac particle.

[4.] Exotic mechanisms (sterile neutrinos).

Answer [2.] (currently the preferred answer) would imply that the neutrino behaves differently from any other spin-1/2 particle in the Standard Model. A Majorana neutrino would force us to abandon the concept of lepton number: Muon and antimuon (negative and positive charge) are their respective antiparticles and decay into (essentially) muon neutrino and muon antineutrino. The decay products, however, would count as one and the same, identical particle. The Majorana wave functions would have to fulfill the charge conjugation invariance condition (be “real rather than complex”).

Majorana wave functions cannot simply be of the form \(\exp(-i \, k \cdot x) \).
Question (Answer [3.]):

Are (at least some of the flavor eigenstates of the) neutrinos superluminal?

Is it possible that, although the OPERA experimental claim has been refuted, the neutrino could still be infinitesimally superluminal?

If so, which physical consequences would result?
Why were tachyons first proposed?

\[E^2 - p^2 = -m^2 < 0 \]

\[E = \frac{mc^2}{\sqrt{v^2/c^2 - 1}} \]

\[v > c \]

\[\frac{dE}{dv} > 0 \quad \text{for} \quad \frac{dE}{dv} < 0 \]

Superluminal particles remain superluminal upon Lorentz transformation (Einstein addition theorem remains valid)...

...and their existence is independent of the axioms of special relativity (G. Szekely).

„Conjugate velocity“ $u = -c^2/v < c$ for $v > c$.
Finding the mass of in tritium beta decay

\[m^2 < 0 \]
Measured Mass Squares are All Negative...

<table>
<thead>
<tr>
<th>Experiment</th>
<th>measured mass squared</th>
<th>formal limit</th>
<th>C.L.</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainz</td>
<td>-1.6 ± 2.5 ± 2.1</td>
<td>2.2</td>
<td>95 %</td>
<td>2000</td>
</tr>
<tr>
<td>Troitsk</td>
<td>-1.0 ± 3.0 ± 2.1 (**)</td>
<td>2.5</td>
<td>95 %</td>
<td>2000</td>
</tr>
<tr>
<td>Zürich</td>
<td>-24 ± 48 ± 61</td>
<td>11.7</td>
<td>95 %</td>
<td>1992</td>
</tr>
<tr>
<td>Tokyo INS</td>
<td>-65 ± 85 ± 65</td>
<td>13.1</td>
<td>95 %</td>
<td>1991</td>
</tr>
<tr>
<td>Los Alamos</td>
<td>-147 ± 68 ± 41</td>
<td>9.3</td>
<td>95 %</td>
<td>1991</td>
</tr>
<tr>
<td>Livermore</td>
<td>-130 ± 20 ± 15</td>
<td>7.0</td>
<td>95 %</td>
<td>1995</td>
</tr>
<tr>
<td>China</td>
<td>-31 ± 75 ± 48</td>
<td>12.4</td>
<td>95 %</td>
<td>1995</td>
</tr>
<tr>
<td>Average of PDG</td>
<td>-27 ± 20</td>
<td>15</td>
<td>95 %</td>
<td>1998</td>
</tr>
</tbody>
</table>

http://cupp.oulu.fi/neutrino/nd-mass.html
The $m^2(\nu_e)$-values obtained by the three checking experiments did agree among themselves within their combined error bars (compare figure 1); the error bars also excluded the ITEP-result. One could, however, recognize another problem which subsequently troubled the community for a long time: The mean values now fell into the unphysical negative region of the m^2-plot! Somehow the new experiments seemed to have overshot the mark. This feature was not significant for the Zürich-result where the error bar still extended into the positive sector. This also holds true for the results from the Tokyo- and Beijing-experiments, which were obtained from conventional spectrometers with modest luminosity [41,42].

But in view of the smaller errors, the results from Los Alamos, and particularly from Livermore, have a problem, caused, in all likelihood, by some unrecognised systematic error source. How should such a result be interpreted? Before 1998 one followed the so-called Bayesian approach, which was recommended by the Particle Data Group; it gave the following guidance: (i) The respective Gaussian error curve is centred at the place of the mean experimental value in the unphysical region and the fraction of its area which extends into the physically allowed region is determined; this fraction is considered the chance of the unphysical value found to be just a statistical fluctuation instead of being caused by some unrecognised systematic error. (ii) The residual area in the physically allowed sector is split into parts 95% to 5% (90% to 10%) and the position of the split is considered the upper limit of the quantity in question with 95% (90%) confidence level (C. L.). Since 1998 the Particle Data Group favours the so-called frequentist approach [43], which gives similar results close to the physically allowed region.
4. Anomalous structures in the spectrum

Fitting of the first data of 1994 run with 4 basic variable parameters resulted in the value for \(m^2_\nu \) equal to \(-22 \pm 5 \text{ eV}^2\) for the truncated spectrum with the truncation energy (further referred as \(E_{\text{low}} \)) more than 18300 eV. At lower truncation energy (down to 18000 eV) the \(m^2_\nu \) value increased to \(-58 \text{ eV}^2\) and was accompanied by a strong increase in \(\chi^2 \). The negative values for \(m^2_\nu \) obviously indicated that there exist some systematic effects not taken into account in the calculation of the theoretical spectrum [1].

Hmmm.....

4. Neutrino mass upper limit

Deduction of the neutrino mass from the data in presence of unexplained anomaly requires a special approach. As it was mentioned earlier the procedure adopted for this purpose consisted in addition to theoretical spectrum of the step function with two variable parameters supposing that such addition may describe in the first approximation local enhancement in the beta-spectrum near to the end-point. Distortion of beta-spectrum imitating the \(m^2_\nu \) effect should also be visible only near end point, otherwise the effect relatively rapidly sinks in growing statistical errors at increasing \(E_0 - E \), but unlike the local enhancement it appears as an addition to (for negative \(m^2_\nu \)) or deficiency (positive \(m^2_\nu \)) of the spectrum intensity that is linearly increasing with \(E_0 - E \). This difference allows one to separate both effects in fit procedure. Of course the size and position of the step being introduced as a free parameter, correlates with \(m^2_\nu \) and it increases the final error of neutrino mass thus acting as a kind of systematic error. This increase compensates main part of the uncertainty of substitution of a priori unknown anomaly shape by the step-like function. A possibility to distinguish neutrino mass effect from step strongly decreases with proximity of step position to end-point due to correlation of their parameters. Such correlation made impossible to use the data of Run97(1) and 98(1) for analysis on the neutrino mass in spite of their good statistics.
Normal (Tardyonic) Dirac Equation

\[
\gamma^0 = \beta = \begin{pmatrix} 1_{2\times2} & 0 \\ 0 & -1_{2\times2} \end{pmatrix}, \quad \gamma = \begin{pmatrix} 0 & \bar{\sigma} \\ -\bar{\sigma} & 0 \end{pmatrix}, \quad \gamma^5 = \begin{pmatrix} 0 & 1_{2\times2} \\ 1_{2\times2} & 0 \end{pmatrix},
\]

\[
(i\gamma^\mu \partial_\mu - m_1) \psi(x) = 0.
\]

Plane-Wave Solutions:

\[
\psi(x) = U_{\pm}^{(1)}(\vec{k}) \exp(-ik \cdot x), \quad \phi(x) = V_{\pm}^{(1)}(\vec{k}) \exp(ik \cdot x),
\]

\[
E^{(1)} = \sqrt{\vec{k}^2 + m_1^2}.
\]
Eigenstates of Helicity [Non-Cyrillic]

\[a_+ (\vec{k}) = \begin{pmatrix} \cos \left(\frac{\theta}{2} \right) \\ \sin \left(\frac{\theta}{2} \right) e^{i\varphi} \end{pmatrix}, \quad a_- (\vec{k}) = \begin{pmatrix} -\sin \left(\frac{\theta}{2} \right) e^{-i\varphi} \\ \cos \left(\frac{\theta}{2} \right) \end{pmatrix}, \]

\[
\frac{\vec{\sigma} \cdot \vec{k}}{|\vec{k}|} a_{\pm} (\vec{k}) = \pm a_{\pm} (\vec{k}),
\]

\[
\sum_\sigma a_\sigma (\vec{k}) \otimes a_\sigma^+ (\vec{k}) = 1_{2 \times 2}, \quad \sum_\sigma \sigma a_\sigma (\vec{k}) \otimes a_\sigma^+ (\vec{k}) = \frac{\vec{\sigma} \cdot \vec{k}}{|\vec{k}|},
\]
“Tardyonic” (“Normal”) Solutions and Sum Rules

\[U^{(1)}_{+}(\vec{k}) = \frac{(\vec{k} + m_1) u_{+}(\vec{k})}{\sqrt{(E^{(1)} - |\vec{k}|^2 + m_1^2}} = \left(\begin{array}{c} \sqrt{\frac{E^{(1)} + m_1}{2 E^{(1)}}} a_{+}(\vec{k}) \\ \sqrt{\frac{E^{(1)} - m_1}{2 E^{(1)}}} a_{+}(\vec{k}) \end{array} \right), \]

\[U^{(1)}_{-}(\vec{k}) = \frac{(\vec{k} + m_1) u_{-}(\vec{k})}{\sqrt{(E^{(1)} - |\vec{k}|^2 + m_1^2}} = \left(\begin{array}{c} \sqrt{\frac{E^{(1)} + m_1}{2 E^{(1)}}} a_{-}(\vec{k}) \\ -\sqrt{\frac{E^{(1)} - m_1}{2 E^{(1)}}} a_{-}(\vec{k}) \end{array} \right). \]

\[E^{(1)} = \sqrt{\vec{k}^2 + m_1^2}. \]

Well-Known Sum Rule:

\[\sum_{\sigma} U^{(1)}_{\sigma}(\vec{k}) \otimes \overline{U}^{(1)}_{\sigma}(\vec{k}) = \frac{\vec{k} + m_1}{2m_1}, \]

\[\sum_{\sigma} V^{(1)}_{\sigma}(\vec{k}) \otimes \overline{V}^{(1)}_{\sigma}(\vec{k}) = \frac{\vec{k} - m_1}{2m_1}. \]
Tachyonic Dirac Equation

\[
\begin{align*}
\gamma^0 &= \beta = \begin{pmatrix} 1_{2 \times 2} & 0 \\ 0 & -1_{2 \times 2} \end{pmatrix}, \\
\vec{\gamma} &= \begin{pmatrix} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{pmatrix}, \\
\gamma^5 &= \begin{pmatrix} 0 & 1_{2 \times 2} \\ 1_{2 \times 2} & 0 \end{pmatrix},
\end{align*}
\]

\[
(i\gamma^\mu \partial_\mu - \gamma^5 m) \psi(x) = 0.
\]

\[
\begin{align*}
\Psi(x) &= U_{\pm}(\vec{k}) e^{-ik \cdot x} \\
\Phi(x) &= V_{\pm}(\vec{k}) e^{ik \cdot x} \\
E &= \sqrt{\vec{k}^2 - m^2},
\end{align*}
\]
Tachyonic Solutions and Sum Rules

Important Sum Rule (2012):
\[
\sum_{\sigma} (-\sigma) \ U_{\sigma}(\vec{k}) \otimes \overline{U}_{\sigma}(\vec{k}) \ \gamma^5 = \frac{k - \gamma^5 m}{2m},
\]

\[
\sum_{\sigma} (-\sigma) \ V_{\sigma}(\vec{k}) \otimes \overline{V}_{\sigma}(\vec{k}) \ \gamma^5 = \frac{k + \gamma^5 m}{2m}.
\]
Similar **Sum Rules** even hold for...

...TWO tardyonic mass terms...

\[(i\gamma^\mu \partial_\mu - m_1 - i\gamma^5 m_2) \psi(x) = 0.\]

\[E = \sqrt{p^2 + m_1^2 + m_2^2}.\]

...TWO tachyonic mass terms...

\[(i\gamma^\mu \partial_\mu - im_1 - \gamma^5 m_2) \psi(x) = 0.\]

\[E = \sqrt{p^2 - m_1^2 - m_2^2}.\]

Underlying Property…

...two tardyonic mass terms...
...Hermiticity...

\[H^{(t)} = \bar{\alpha} \cdot \vec{p} + \beta m_1 + i \beta \gamma^5 m_2. \]

...two tachyonic mass terms...
...\(\gamma^5 \) Hermiticity ("Pseudo-Hermiticity")...

\[H' = \bar{\alpha} \cdot \vec{p} + i \beta m_1 + \beta \gamma^5 m_2, \]

\[H' = \gamma^5 H' + \gamma^5. \]

Hermiticity versus Pseudo-Hermiticity

\[H^{(t)} = \bar{\alpha} \cdot \vec{p} + \beta m_1 + i \beta \gamma^5 m_2. \]

\[H^{(t)} = (H^{(t)})^+, \]

\[H^{(t)} = \text{Hermitian operator} \]

\[H' = \bar{\alpha} \cdot \vec{p} + i \beta m_1 + \beta \gamma^5 m_2, \]

\[H' = \eta^{-1} H'^+ \eta, \]

\[H' = \gamma^5 H'^+ \gamma^5, \]

\[\eta = \gamma^5, \]

\[(\gamma^5)^{-1} = \gamma^5, \]

\[H' = \text{pseudo-Hermitian (and that’s enough!)} \]
The Propagator in Field Theory...

\[\langle 0 | \Gamma \psi(x) \bar{\psi}(y) \Gamma | 0 \rangle = i S(x - y), \]

\[\psi(x) = \int \frac{d^3 k}{(2\pi)^3} \frac{m}{E} \sum_{\sigma = \pm} \left\{ b_\sigma(k) U_\sigma(\vec{k}) e^{-i \vec{k} \cdot \vec{x}} + d_\sigma^+(k) V_\sigma(\vec{k}) e^{i \vec{k} \cdot \vec{x}} \right\}, \]

\[\{ b_\sigma(k), b_\rho(k') \} = \{ b_\sigma^+(k), b_\rho^+(k') \} = 0, \]
\[\{ d_\sigma(k), d_\rho(k') \} = \{ d_\sigma^+(k), d_\rho^+(k') \} = 0, \]

\[\{ b_\sigma(k), b_\rho^+(k') \} = f(\sigma, \vec{k}) (2\pi)^3 \frac{E}{m} \delta^3(\vec{k} - \vec{k}') \delta_{\sigma \rho}, \]
\[\{ d_\sigma(k), d_\rho^+(k') \} = g(\sigma, \vec{k}) (2\pi)^3 \frac{E}{m} \delta^3(\vec{k} - \vec{k}') \delta_{\sigma \rho}, \]

tardyonic choice: \[f(\sigma, \vec{k}) = g(\sigma, \vec{k}) = 1, \quad \Gamma = \mathbb{1}_{4 \times 4}, \]

tachyonic choice: \[f(\sigma, \vec{k}) = g(\sigma, \vec{k}) = -\sigma, \quad \Gamma = \gamma^5, \]
\[\langle 0 | T \psi(x) \overline{\psi}(y) \Gamma | 0 \rangle = i S(x-y), \]

\[\psi(x) = \sqrt{\frac{m}{E}} \sum_{\sigma = \pm} \left\{ b_{\sigma}(k) U_{\sigma}(\vec{k}) e^{-i k \cdot x} + d_{\sigma}^{+}(k) V_{\sigma}(\vec{k}) e^{i k \cdot x} \right\}, \]

\[\langle 0 | T \psi(x) \overline{\psi}(y) \gamma^5 | 0 \rangle = \Theta(x^0 - y^0) \int \frac{d^3 k}{(2\pi)^3} \frac{m}{E_k} \int \frac{d^3 q}{(2\pi)^3} \frac{m}{E_q} \sum_{\sigma = \pm} \sum_{\rho = \pm} \langle 0 | b_{\sigma}(k) b_{\rho}^{+}(q) | 0 \rangle U_{\sigma}(k) \otimes \overline{U}_{\rho}(q) \gamma^5 e^{-i k \cdot y} e^{i q \cdot y} \]

\[- \Theta(y^0 - x^0) \int \frac{d^3 k}{(2\pi)^3} \frac{m}{E_k} \int \frac{d^3 q}{(2\pi)^3} \frac{m}{E_q} \sum_{\sigma = \pm} \sum_{\rho = \pm} \langle 0 | d_{\sigma}(q) d_{\rho}^{+}(k) | 0 \rangle V_{\rho}(k) \otimes \overline{V}_{\sigma}(q) \gamma^5 e^{i k \cdot y} e^{-i q \cdot y} \]

Again, we need the sum rule!!!

\[\langle 0 | T \psi(x) \overline{\psi}(y) \gamma^5 | 0 \rangle = i \int \frac{d^4 k}{(2\pi)^4} e^{-i k \cdot (x-y)} \frac{k^\gamma - \gamma^5 m}{2m} \frac{m}{E_k} \frac{1}{k_0 - E_k + i \epsilon} \]

\[+ i \int \frac{d^4 k}{(2\pi)^4} e^{-i k \cdot (x-y)} \frac{-\vec{k} + \gamma^5 m}{2m} \frac{m}{E_k} \frac{1}{k_0 + E_k - i \epsilon} \]

\[= i \int \frac{d^4 k}{(2\pi)^4} e^{-i k \cdot (x-y)} \frac{k^\gamma - \gamma^5 m}{2m} \frac{1}{E_k} \left(\frac{1}{k_0 - E_k + i \epsilon} - \frac{1}{k_0 + E_k - i \epsilon} \right) \]

\[= i \int \frac{d^4 k}{(2\pi)^4} e^{-i k \cdot (x-y)} \frac{k^\gamma - \gamma^5 m}{k^2 + m^2 + i \epsilon} \]
Mike Summers from George Mason said something nice about this derivation,
The Propagator in Field Theory...

...tardyonic propagator...

\[S^{(1)}(k) = \frac{1}{k^2 - m_1^2 + i\epsilon} = \frac{k + m_1}{k^2 - m_1^2 + i\epsilon}. \]

...tachyonic propagator...

\[S_T(k) = \frac{1}{k^2 - \gamma^5(m + i\epsilon)} = \frac{k^2 - \gamma^5 m}{k^2 + m^2 + i\epsilon}. \]

Negative Norm = Wrong Helicity...

Important: $\sigma = 1$ means right-handed-helicity neutrinos and left-handed antineutrinos for which the norm becomes negative...
One cannot reverse the suppression of the “wrong” helicity states because this would lead to contradiction with a smooth massless limit [see arXiv:1205.0521v3 for details]

See also an illustrative explicit calculation in arXiv:1201.6300 for the Dirac equation with imaginary mass, where the effect of an inversion of the imaginary mass term is studied.
Literature...
On Dirac’s New Method of Field Quantization

W. Pauli

Institute for Advanced Study, Princeton, New Jersey
As a generalization of the Hermitian conjugate operator, we introduce the adjoint operator which we denote by A^*. This is given by
\[A^* = \eta^{-1} A^\dagger \eta^\dagger = \eta^{-1} A^\dagger \eta, \tag{4} \]

\[\psi/\partial t = -iH\psi, \]

hence
\[(\partial \bar{\psi} / \partial t) \eta = i\bar{\psi} H^\dagger \eta = i\bar{\psi} \eta H^*, \tag{6} \]

has to be self-adjoint,
\[H^* = H. \]

\[\eta = \gamma^5 \]
Is the existence of superluminal particles consistent with the axioms of special relativity?

[Gergely Szekely, Renyi Institute, of Mathematics, Budapest]

THE EXISTENCE OF SUPERLUMINAL PARTICLES IS CONSISTENT WITH THE KINEMATICS OF EINSTEIN'S SPECIAL THEORY OF RELATIVITY

GERGELY SZÉKELY

Abstract. Within an axiomatic framework of kinematics, we prove that the existence of faster than light particles is logically independent of Einstein’s special theory of relativity. Consequently, it is consistent with the kinematics of special relativity that there might be faster than light particles.

There are a number of recent preprints on this subject...

The superluminal neutrino hypothesis and the ν mass hierarchy

Robert Ehrlich, rehrlich@gmu.edu

Physics, Astronomy and Computational Sciences
George Mason University
Fairfax, VA 22030
703-993-1268
703-993-1269 (FAX)

Published as [Astropart. Phys. 41 (2013) 1-6]
THE NEUTRINO AS A TACHYON

Alan CHODOS \(^1\), Avi I. HAUSER

Physics Department, Yale University, New Haven, CT 06511, USA

and

V. Alan KOSTELECKÝ

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 30 October 1984

We investigate the hypothesis that at least one of the known neutrinos travels faster than light. The current experimental situation is examined within this purview.
Pseudo-Hermitian quantum dynamics of tachyonic spin-1/2 particles

U D Jentschura and B J Wundt

Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409-0640, USA

E-mail: ulj@mst.edu

Received 19 December 2011, in final form 12 April 2012
Published 23 October 2012
Online at stacks.iop.org/JPhysA/45/444017
Localizability of tachyonic particles and neutrinoless double beta decay

U.D. Jentschura1,2,a, B.J. Wundt1

1Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409-0640, USA
2Institut für Theoretische Physik, Philosophenweg 16, 69020 Heidelberg, Germany

Received: 19 December 2011 / Revised: 9 January 2012
© Springer-Verlag / Società Italiana di Fisica 2012
Neutrinos and Cosmology

Research Article

From Generalized Dirac Equations to a Candidate for Dark Energy

U. D. Jentschura and B. J. Wandt

Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409, USA

Correspondence should be addressed to U. D. Jentschura; jentschurau@mst.edu

Received 12 November 2012; Accepted 1 December 2012

Academic Editors: G. A. Alves, C. A. D. S. Pires, and F.-H. Liu

Copyright © 2013 U. D. Jentschura and B. J. Wandt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider extensions of the Dirac equation with mass terms $m_1 + i\gamma^5 m_2$ and $im_3 + \gamma^5 m_4$. The corresponding Hamiltonians are Hermitian and pseudo-Hermitian (γ^5 Hermitian), respectively. The fundamental spinor solutions for all generalized Dirac equations are found in the helicity basis and brought into concise analytic form. We postulate that the time-ordered product of field operators should yield the Feynman propagator (ie prescription), and we also postulate that the tachyonic as well as tachyonic Dirac equations should have a smooth massless limit. These postulates lead to sum rules that connect the form of the fundamental field anticommutators with the tensor sums of the fundamental plane-wave eigenspinors and the projectors over positive-energy and negative-energy states. In the massless case, the sum rules are fulfilled by two egregiously simple, distinguished functional forms. The first sum rule remains valid in the case of a tachyonic theory and leads to the canonical massive Dirac field. The second sum rule is valid for a tachyonic mass term and leads to a natural suppression of the right-handed helicity states for tachyonic particles and left-handed helicity states for tachyonic spin-1/2 antiparticles. When applied to neutrinos, the theory contains a free tachyonic mass parameter. Tachyons are known to be repulsed by gravity. We discuss a possible role of a tachyonic neutrino as a contribution to the accelerated expansion of the Universe “dark energy.”
Papers on Generalized Dirac Equations:

arXiv:1110.4171 (relativistic quantum mechanics)

arXiv:1201.0359 (quantized field theory)

arXiv:1201.6300 (imaginary mass and helicity dependence)
[J.Mod.Phys. 3 (2012) 887]

arXiv:1205.0145 (attempt at neutrino mass running)

arXiv:1205.0521v3 (generalized theory and cosmology)
[ISRN High-Energy Physics 2013 (2013) 374612]

arXiv:1206.6342 (illustrative discussion)
[illustrative discussion and conference abstract]
Conclusions
Conclusions

(From arXiv:1205.0521v3)

On the other hand, if we assume that the neutrino is described by the tachyonic Dirac equation, then the following statements are valid:

- Statement #1: We can properly assign lepton number and use plane-wave eigenstates for incoming and outgoing particles, while allowing for nonvanishing mass terms and thus, mass square differences among the neutrino mass (not flavor) eigenstates.
- Statement #2: There is a natural resolution for the ‘autobahn paradox’ because a left-handed spacelike neutrino always remains spacelike upon Lorentz transformation and cannot be overtaken.
- Statement #3: The right-handed particle and left-handed antiparticle states are suppressed due to negative Fock-space norm.
- Statement #4: At least qualitatively, tachyonic neutrinos could yield an explanation for a repulsive force on intergalactic distance scales as they are repulsed, like all tachyons, by gravitational interactions (‘dark energy’).

A superluminal neutrino could appear to solve at least as many problems as it raises.
Conclusions

What happens if Dr. Spock overtakes a left-handed neutrino...

Spinor Sum for Positive-Energy States:
\[
\sum_{\sigma} (-\sigma) \mathcal{U}_\sigma(k) \otimes \overline{\mathcal{U}}_\sigma(k) \gamma^5 = \frac{k - \gamma^5 m}{2m}
\]

Spinor Sum for Negative-Energy States:
\[
\sum_{\sigma} (-\sigma) \mathcal{V}_\sigma(k) \otimes \overline{\mathcal{V}}_\sigma(k) \gamma^5 = \frac{k + \gamma^5 m}{2m}
\]
Thank you very much!
...We always have to reinterpret antiparticle trajectories by inverting the direction of time and space, but for superluminal particles, there is an additional difficulty because the time ordering of creation and annihilation may be reversed, depending on the velocity of the observer.