Effective Power/Ground Plane Decoupling for PCB

Dr. Bruce Archambeault IBM Distinguished Engineer IEEE Fellow

> IBM Research Triangle Park, NC Barch@us.ibm.com

> > October 2007

Power Plane Noise Control

Power/Ground-Reference Plane Noise

- Must consider TWO Major Factors
 - EMC -- Reduce noise along edge of board from IC somewhere else
 - Functionality -- Provide IC with sufficient charge
- Decoupling strategies are FULL of <u>Myths</u>
 - Consider the physics
 - Don't forget <u>Inductance!</u>

Source of Power/Ground-Reference Plane Noise

- Power requirements from IC during switching
- Critical Net currents routed through via

Power Bus Spectrum Clock Driver IDT74FCT807

Noise Injected between Planes Due to Critical Net Through Via

6

Transfer Function from Via to I/O Pin

Decoupling Must be Analyzed in Different Ways for Different Functions

• EMC

- Resonance big concern
- Requires STEADY-STATE analysis
 - Frequency Domain
- Transfer function analysis
 - Eliminate noise along edge of board due to ASIC/IC located far away

Decoupling Must be Analyzed in Different Ways for Different Functions

- Provide Charge to ASIC/IC
 - Requires TRANSIENT analysis
 - Charge will NOT travel from far corners of the board fast enough
 - Local decoupling capacitors dominate
 - Impedance at ASIC/IC pins important

Steady-State Analysis

- Measurements and Simulations
- Test Board with Decoupling capacitors every 1" square

Test Board Ports

October 2007

Dr. Bruce Archambeault

S21 Used for Decoupling "Goodness"

- Ratio of Power 'out' to power 'in'
- Better Indicator of EMI noise transmission across board
- Also used to validate simulations

Measured S21 for 12" x 10" PC Board Between Power/Ground Planes with No Decoupling Capacitors (Measured Center to Corner)

Test Board Decoupling Capacitor Placement for 25 .01 uf Caps

October 2007

Test Board Decoupling Capacitor Placement for 51 .01 uf Caps

Measured S21 for 12" x 10" PC Board Between Power/Ground Planes with Various Amounts of Decoupling Capacitors (Measured Center to Corner)

S21 Between Port #8 and Port #1 on Test Board With Various Amounts of .01 uf Decoupling Capacitors 0 -No Caps -10 25 Caps 51 Caps -20 -99 Caps S21 (dB) -30 -40 -50 -60 0.0E+00 2.0E+08 4.0E+08 6.0E+08 8.0E+08 1.0E+09 1.2E+09 1.4E+09 1.6E+09 1.8E+09 Frequency (Hz) October 2007 Dr. Bruce Archambeault

17

♦ 0.01uF Cap Impedance **▲** 22pF ▲ 0.01uF in parallel with 22pF 10000 1000 ZI (Ohms) 100 10 1 0.1 1.00E+8 1.00E+10 1.00E+6 1.00E+7 1.00E+9 Freq (Hz)

Test Board Decoupling Capacitor Placement for 41 22pf Caps (In Addition to 99 .01uf Caps)

October 2007

S21 Between Port #8 and Port #1 on Test Board With 99 .01 uf Decoupling Capacitors and Various Amounts of 22pf Capacitors Added

Measured Comparison of Multiple and Single Value Decoupling Capacitor Strategies

Voltage Distribution @ 350 MHz .01uF and 330pF Case (Source in Center)

Voltage Distribution @ 750 MHz .01uF and 330pF Case (Source in Center)

25

Voltage Distribution @ 950 MHz .01uF and 330pF Case (Source in Center)

26

Decoupling Capacitor Mounting

 Keep as to planes as close to capacitor pads as possible

Decoupling Capacitor Mounting

 Keep as to planes as close to capacitor pads as possible

Via Configuration Can Change Inductance

Comparison of Decoupling Capacitor Impedance 100 mil Between Vias & 10 mil to Planes

October 2007

Dr. Bruce Archambeault

Comparison of Decoupling Capacitor Via Separation Distance Effects

0.1 uF Capacitor

Via Seperation (mils)	Inductance (nH)	Impedance @ 1 GHz (ohms)
20	.06	.41
40	0.21	1.3
60	0.36	2.33
80	0.5	3.1
100	0.64	4.0
150	1.0	6.23
200	1.4	8.5
300	2.1	12.69
400	2.75	17.3
500	3.5	21.7

Example Connection Inductance Values

Spacing between Vias	Complex Formula (20 mils to plane)	Simple rect loop (20 mils to plane)	Complex Formula (10 mils to plane)	Simple rect loop (10 mils to plane)
0805 + 2*10mil	3.0 nH	3.1 nH	2 nH	1.38 nH
0805 + 2*100mil	4.1 nH	4.3 nH	3 nH	2.0 nH
0805 + 2*160mil	5.1 nH	5.1 nH	3.5 nH	2.5 nH
0603 + 2*10mil	2.3 nH	1.74 nH	1.1 nH	0.8 nH
0603 + 2*100mil	3.3 nH	3.15 nH	2.1 nH	1.5 nH
0603 + 2*160mil	4.2 nH	4.3 nH	2.4 nH	2.07 nH

Sources for complex formula:

Knighten, James L., Bruce Archambeault, Jun Fan, Samuel Connor, James L. Drewniak, "PDN Design Strategies: II. Ceramic SMT Decoupling Capacitors – Does Location Matter?," *IEEE EMC Society Newsletter*, Issue No. x, Winter 2006, pp. 56-67. (www.emcs.org)

Fan, Jun, Wei Cui, James L. Drewniak, Thomas Van Doren, and James L. Knighten, "Estimating the Noise Mitigating Effect of Local Decoupling in Printed Circuit Boards," *IEEE Trans. on Advanced Packaging*, Vol. 25, No. 2, May 2002, pp. 154-165. Transient Analysis (Time Limited)

- Provide charge to ASIC/IC
- Inductance dominates impedance
 Loop area 1st order effect
- Traditional analysis not accurate enough

Typical PCB Power Delivery

Equivalent Circuit for Power Current Delivery to IC

Traditional Analysis #1

Use impedance of capacitors in parallel

Impedance to IC power/gnd pins

No Effect of Distance Between Capacitors and IC Included!

October 2007

Dr. Bruce Archambeault

Traditional Impedance Calculation

Traditional Analysis #2

 Calculate loop area – Traditional loop Inductance formulas

- Which loop area? Which size conductor

Over Estimates L and Ignores Distributed Capacitance

Dr. Bruce Archambeault

More Accurate Model Includes Distributed Capacitance

Distributed Capacitance Schematic

Effect of Distributed Capacitance

- Can NOT be calculated/estimated using traditional capacitance equation
- Displacement current amplitude changes with position and distance from the source

Displacement Current 500 MHz via @450 mils from Source

Need to Find the Real Effect of Decoupling Capacitor Distance

- Perfect decoupling capacitor is a via between planes
- FDTD simulation to find the effect of shorting via distance from source
- Vary spacing between planes, distance to via, frequency, etc

Impedance of Shorting Via vs. Frequency Four Via Case (20 mil Seperation Between Plates)

Impedance Result

- Linear with frequency (on log scale)
- Looks like an inductance only!
- Consider this inductance an Apparent Inductance
- Apparent inductance is constant with frequency

Apparent Inductance for One Shorting Via Case 20 mil Plate Separation

October 2007

Dr. Bruce Archambeault

Formulas to Predict Apparent Inductance

$$\begin{split} L_{one-via} &= (0.1336s - 0.0654) Ln(dist) + (-0.2609s + 0.2675) \\ L_{two-via} &= (0.1307s - 0.0492) Ln(dist) + (-0.2948s + 0.1943) \\ L_{three-via} &= (0.1242s - 0.0447) Ln(dist) + (-0.2848s + 0.1763) \\ L_{four-via} &= (0.1192s - 0.0403) Ln(dist) + (-0.2774s + 0.1592) \end{split}$$

s = separation between plates (mils/10)

dist = distance to via

October 2007

True Impedance for Decoupling Capacitor

Impedance Calculation with Apparent Inductance for Four Decoupling Capacitor Values

October 2007

Effect of Distributed Capacitance

- Can NOT be calculated/estimated using traditional capacitance equation
- Displacement current amplitude changes with position and distance from the source
- Following examples use cavity resonance technique (EZ-PowerPlane)
 - Frequency Domain to compare to measurements
 - Time Domain using SPICE circuit from cavity resonance analysis

Parameters for Comparison to Measurements

- Dielectric thickness = 35 mils
- Dielectric constant = 4.5, Loss tan = 0.02
- Copper conductivity = 5.8 e7 S/m

Measured vs Model (EZ-PP) S21 for 12" x 10" PC Power/gnd with 95 .01uF caps Position 8-to-1

Impedance at Port #1 Single 0.01 uF Capacitor at Various Distances (35mil Dielectric)

Z11 Phase Comparison as Capacitor distance Varies for 35 mils FR4

Impedance at Port #1 Single 0.01 uF Capacitor at Various Distances (10mil Dielectric)

Cavity Resonance (EZ-PowerPlane) Equivalent Circuit for HSPICE

Impedance Comparison (EZ-PP vs HSPICE) at Port #1 Single 0.01 uF Capacitor at Various Distances (10mil Dielectric)

Current Source Pulse for Simulated IC Power/GND 750 ps Rise/Fall

Single Capacitor (with 2nH) at Various Distances 50 0 -50 -100 Current (milliamps) -150 -200 -250 - 750ps Rise, 35 mil planes,1uF @ 10mils 750ps Rise, 35 mil planes, 1uF @ 400mils -300 750ps Rise, 35 mil planes, 1uF @ 800mils 750ps Rise, 35 mil planes, 1uF @ 1200mils 750ps Rise, 35 mil planes, 1uF @ 1600mils -350 -400 0.5 1.5 2 2.5 3 3.5 0 4 Time (ns)

Time Domain Current through Capacitor From Simulated IC Power/GND (1 amp)

October 2007

Dr. Bruce Archambeault

Time Domain Current through Capacitor From Simulated IC Power/GND (1 amp) Single Capacitor (with no L) at Various Distances

Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)

Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)

0.01 uF Capacitor with 0.5 nH ESL and 30 mOhm ESR 1.4 1.2 Maximum Voltage at source (volts) 35 mil FR4 Ж 1 - 10 mil FR4 2 mil FR4 0.8 -1 mil FR4 \rightarrow 0.5 mil FR4 0.6 0.4 0.2 1 1 1 0 200 400 600 800 1000 1400 1600 1800 0 1200 2000 **Distance From Capacitor (mils)** October 2007 Dr. Bruce Archambeault

Maximum Voltage vs Distance to Capacitor for 1 ns Rise/fall time 0.01 uF Capacitor with 0.5 nH ESL and 30 mOhm ESR
So Far.....

- Frequency domain simulations not optimum for charge delivery decoupling calculations (phase not considered)
- Time domain simulations using single pulse of current indicate limited capacitor location effect
 - Connection inductance of capacitor much higher than inductance between planes
 - Charge delivered only from the planes

Charge Depletion

- IC draws charge from planes
- Capacitors will re-charge planes

- Location does matter!

Model for Plane Recharge Investigations

Port 2 represents IC current draw

Charge Between Planes vs.. Charge Drawn by IC

Board total charge : $C^*V = 3.5nF^*3.3V = 11nC$

Pulse charge 5A peak : I*dt/2 = (1ns*5A)/2=2.5nC

Triangular pulses (5 Amps Peak)

Noise Voltage from Inductive Effect of Current Draw

(a)

(b)

Current pulses too small to see charge depletion effects in this time scale

Charge Depletion \rightarrow Voltage Drop

79

Charge Depletion vs. Capacitor Distance

Charge Depletion for Capacitor @ 400 mils for Various Connection Inductance

Effect of Multiple Capacitors While Keeping Total Capacitance Constant

The decap locations are 800mils, 1200mils, 2700mils from the power pin

(power-ground pins at IC center)

• C=1uF

- ESL=0.5nH
- ESR=1 Ω

Effect of Multiple Capacitors While Keeping Total Capacitance Constant

The decap locations are 800mils, 1200mils, 2700mils from the power pin

(power-ground pins at IC center)

- C=0.5uF
- ESL=0.5nH
- ESR=1 Ω

Effect of Multiple Capacitors While Keeping Total Capacitance Constant

The decap locations are 800mils, 1200mils, 2700mils from the power pin

(power-ground pins at IC center)

• C=0.25uF

- ESL=0.5nH
- ESR=1 Ω

Constant Capacitance 800 mil Distance

October 2007

Constant Capacitance 800 mil Distance

October 2007

Constant Capacitance 1200 mil Distance

Constant Capacitance 1200 mil Distance

October 2007

Constant Capacitance 2700 mil Distance

October 2007

Constant Capacitance 2700 mil Distance

October 2007

Example #1 Low Cap Connection Inductance

Example #2 High Cap Connection Inductance

Example #1 Hi Cap Connection Inductance

Example #1 Lower Cap Connection Inductance

J. L Knighten, B. Archambeault, J. Fan, et. al., "PDN Design Strategies: II. Ceramic SMT Decoupling Capacitors – Does Location Matter?," *IEEE EMC Society Newsletter*, Issue No. 207, Winter 2006, pp. 56-67.

Dr. Bruce Archambeault

95

IC

Effect of Capacitor Value??

- Need enough charge to supply need
- Depends on connection inductance

Charge = C^*V

Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)

Time Domain Noise Voltage Across Simulated IC Power/GND Pin (1 amp)

98

Noise Voltage is INDEPENDENT of Amount of Capacitance!

Decoupling Summary (1)

- EMC Frequency Domain analysis
 - Steady-state conditions \rightarrow resonances
 - Transfer function across the board
 - Measurements and simulations agree well
 - Distance of capacitors from ASIC load does not change steady-state impedance

Decoupling Summary (2)

- Charge Delivery Time-Limited analysis
 - Using equivalent SPICE circuit from simulations
 - Current from capacitors change significantly as capacitor moves further away from ASIC
 - Noise at ASIC pins increase significantly as capacitor moves further away from ASIC
 - Steady-state frequency domain analysis not sufficient for charge delivery design of decoupling capacitors

Decoupling Summary (3)

- Recharge the planes
 - -Location of Capacitor does matter!
 - Effect more significant for thick dielectrics
 - -Connection Inductance is important
 - -Value of capacitance not important
 - More capacitors is better than larger/fewer capacitors

