12/4/2010

Cullen College of Engineering

Design/Modeling for Periodic
Nano Structures for EMC/EMI

Ji Chen

Electrical & Computer Engineering

_ Department of _
Electrical and Computer Engineering

University of Houston
Houston, TX, 77204

Cullen College of Engineering

Outline

e Introduction

 Composite Materials Design with Numerical
Mixing-Law

 FDTD design of Nano-scale FSS

e Stochastic analysis

Electrical & Computer Engineering

e Conclusions




12/4/2010

Cullen College of Engineering

Introduction
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Shielding Materials with Periodic Structures

Effective Medium Photonic Crystal FSS
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Composite Materials with Numerical Mixing-Law

Multiphase mixture ) Multilayer mixture
Eg £ Ee
€3 &
£3 Er.
€2 En
€1
En

108 Tan ToTe

12/4/2010



12/4/2010

Cullen College of Engineering

Composite Materials with Numerical Mixing-Law
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Effect of Inclusion Electrical Properties
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Effect of Inclusion Electrical Properties
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Cubic Inclusion
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Optimization for Multiphase Mixture
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FDTD Modeling
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Challenge in the odeling of IR FSSs

» PEC assumption is not valid any Lorentz-Drude Model (gold)

more
B The metal is highly frequency-
dependent now
B [t has both negative permittivity

and conductive loss o2 k f.o’
B But all of the tradition microwave = 17%'_ + z%
designs are based on this a)(a)— jFO) i1 (a)i - )+ jal”

assumption.

» FDTD Modeling for Periodic
Structures
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Finite-Sized Electromagnetic Source
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Plane Wave Incidence Finite Size Source Incidence

»Plane wave incidence
[E(xra).H(x2)]=[E( K (x)]e ™

® Periodic boundary condition (PBC) can be applied for above
equation in both frequency and time domains

»Finite size source incidence

® Assumption is no longer valid

® Intime domain, FDTD simulation is needed
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ASM-FDTD Method
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® Spectral domain transformation of the finite size source
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® The field in the Oth unit cell excited by this source can be represented as
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® The O™ unit cell spectral domain solution EJ, (k,,y,t) can be obtained by

FDTD simulation when following PBC is applied
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Different Model Impacts On The Final Result
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Five Practical Patterns II: Faced Centered Case
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Variation quantification

» Composite mixtures have inherent randomness

» The homogenized EM property needs to be evaluated

» Sources of randomness includes

-- material electrical properties

Electrical & Computer Engineering

-- component geometry
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Variation quantification techniques

» Monte-Carlo (MC) : Simple to implement, computationally
expensive

» Perturbation: Limited to small fluctuation

» Stochastic collocation method (SCM): Can handle large
fluctuations, highly efficient, transforms the stochastic analysis into a
series of deterministic simulations
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Introduction to SCM

> Suppose we have N random parameters {&,}.,
_ we use the abbreviation &={&.&,...&}
— the parameters could be distributed according to a joint PDF p(gg)

—each §n could be distributed independently according to its probability
density function (PDF) p,(<&,)

N
p(‘g):Hpn(gn)
n=1
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»Realization = a output f(&) from the deterministic simulation tool
for a specific choice of & ={&}\,
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Introduction to SCM (cont.)

» One may be interested in statistics of outputs

— average or expected value

E[f]=] f@p@)s

— variance

Var| f] G(f(f))p(f)df

—E[f?]-E[T /

[ 2 @p@0z-([ 1@p@aE)

r

— higher moments
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Introduction to SCM (cont.)

» Integrals of the type

[ Gt @np(&ne

cannot, in general, be evaluated exactly

» Thus, these integrals are approximated using a quadrature rule

[ 6t @np(as - Z 0P (E)G((T(E)))

for some choice of

quadrature weights {o,}3,
and

quadrature points {&,}3,
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Introduction to SCM (cont.)

> To use such a rule, one needs to know the simulation output  G(f (£))
at each of the quadrature points {Ec.}j:1

-- for this purpose, one can build a polynomial approximation G(f (£))
and then evaluate that approximation at the quadrature points

-- the simplest means of doing this is to use the set of Lagrange

interpolation polynomials {LS (E)}?_“””'Ecorrespondlng to the sample points

B [ et Epdas
Nsam e ~ Q = B
G(f (€)= i G(f (&L (£) —qup(éq>G((f(§q)))
s=1 N sampte

= 2 G(f(é))z o€ )L (&)

> Then we have the approximation for the mean:

sample
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Numerical example

gr_host = 1’ O-host = O

0, =0,=¢,=1.0um,

Mean values:

E[VF]:15%
Ele 1=8,E[o.

1

r inclusion IHCIUSIOH]

> Goal: Evaluating the global sensitivity of effective permittivity
due to variation in certain mixing parameters

> Varying parameters: inclusion relative permittivity , inclusion conductivity
and volume fraction; all of which are assumed to be Gaussian variables.

B
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Convergence Test

> Operating Frequency: 1e10 Hz

> Variable: inclusion permittivity, has a +3%4 variance around its mean value

Operating Freq 1.0E+010 Hz
2
[ * |

Mo, of Sampling Points

Operating Freq 1.0E+010 Hz

No. of Sampling Points

No.of Sarmpling Points

mean

Neo. of Sampling Points

Standard deviation
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The Effect of Inclusion Relative Permittivity Variation
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The Effect of Inclusion Conductivity Variation
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The Effect of Volume Fraction Variation
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The Effect of Volume Fraction Variation
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This case involves a variance of 30% around
the mean value %VF =15%
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Conclusion

 New FDTD methods for periodic structures
» Applications include

- FSS

— Meta-materials

— Nano-scale devices

» Multi-layer periodic structures at different
periodicities
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