IEEE EMC Society Distinguished Lecturer Seminar:
Signal Integrity of TSV-Based 3D IC

July 21, 2010
Joungho Kim at KAIST

joungho@ee.kaist.ac.kr
http://tera.kaist.ac.kr
Contents

1) Driving Forces of 3D Package and IC
2) Signal Integrity Design
3) Noise Coupling Issues
4) Noise Isolations
5) Summary
3D Movie
3D Housings

Sky Lounge
Apartment
Medical care center
Restaurant
Fitness & Spa
Parking
16GB Samsung NAND Flash, 8Gbx16
3D Hamburger

SDRAM

Digital Core

RF

Analog
Expected Market of 3D IC

Market Driving Forces of 3D IC

- **Performance driven**
 - "Mid term" driver: > 2010
 - "More than Moore" Heterogeneous integration
 - Co-integration of RF + logic + memory + sensors in a reduced space
 - Electrical performance
 - Interconnect speed and reduced parasitic power consumption

- **Form factor driven**
 - "Short term" driver: > 2008
 - Treating the highest capacity / volume ratio

- **Cost driven**
 - "Long term" driver: > 2012
 - Can 3D be cheaper than going to the next lithography node?

- **Density driven**
 - Achieving the highest density

3D vs. "More Moore"
- Can 3D be cheaper than going to the next lithography node?

Source: “3D IC & TSV Report”, Yole Development
Technology Trend of 3D IC

* ref: IBM J. RES. & DEV. VOL. 52 NO.6 NOVEMBER 2008, p555

Relative comparison of I/O densities for 3D silicon, 3D die stacking, and silicon packaging, for both ceramic and organic packaging.
Core Technologies of 3D IC

- Unified Design/CAD Environment and Test
- Chip & SoC Architecture and Design Methodologies
- 3D Thermal & Reliability Analysis And Design Methodologies
- Low Cost Interposer Process and Design Technology
- Chip-to-Wafer Stacking & Bonding, TSV Technology

Terahertz Interconnection and Package Laboratory
Signal Integrity Design Issues in 3D IC

Signal Integrity I:
- Loading Effect & Reflection
 - Limitation of High Speed Signaling by Capacitive Loading
 - Impedance Mismatching, Reflection

Signal Integrity II:
- Crosstalk & Jitter
 - Crosstalk Between TSVs
 - Die-to-Die Vertical Coupling
 - Jitter by Inter-Symbol-Interference

EMI
- Vertical Die-to-Die EMI Coupling
- RF Sensitivity Reduction by EMI
- EM Radiation Increase

Power Integrity
- Simultaneous Switching Noise caused by Insufficient Power
- High freq Noise Coupling & Transfer

3D IC using TSV (Through Silicon Via)
Disadvantages of Wire Bonding Stacked Chip Package

- Long Interconnection
 - Long RC Delays
 - High Impedance for Power Distribution Network
 - High Power Consumption
 - Poor Heat Dissipation (Thick Substrate)

- Bonding Wire located in Chip Perimeter
 - Low Density Chip Wiring
 - Limited Number of I/O
 - Limited I/O Pitch
 - Large Area Package

- Complex Interposer
 - Long Redistribution Interconnection
 - Bonding Wire located in Interposer Periphery

3D Stacked Chip Package with Wire Bonding
Key Technology: TSV (Through Silicon Via)

• Short Interconnection
 → Reduced RC Delays
 → Low Impedance for Power Distribution Network
 → Low Power Consumption
 → Heat Dissipation Through Via

• No Space Limitation for Interconnection
 → High Density Chip Wiring
 → No Limitation of I/O Number
 → No Limitation of I/O Pitch
 → Small Area Package

3D TSV Stacked IC
★ Why does ★TSV★ Family happy ^^ ?

Happy TSV Family~!

- Shorter distance!
- Lower loss of energy!

Sad Wire-bonding Family~!

- So fast! 🎶
- It's awesome!!

So tired T^T !
It takes too much energy!!

Stairs !!

4th Floor
3rd Floor
2nd Floor
1st Floor
10 chip stacked Package by KAIST

55 μm TSV diameter
150 μm Pitch
- Significant high-frequency signal loss occur at Signal Transmission Through TSV
- The signal loss through TSV is caused by substrate leakage and coupling

Magnitude of S21

Close up of through wafer via
- Signal loss increases substantially with number of stacks/TSVs
- The signal loss through TSV is caused by substrate leakage and coupling
A Through Silicon Via Structure on Double-sided Silicon Substrate

- Underfill
- Inter-metal Dielectric
- Bump
- Metal (M1,M2)
- Insulation layer
- Double-sided Silicon Substrate
- TSV
- C_{insulator}
- G_{Si sub}
- Cu
- SiO_{2}
- Si

Terahertz Interconnection and Package Laboratory
Frequency-dependent Loss of Through Silicon Via

Frequency dependent term

Insertion loss (dB)

Frequency (GHz)

Capacitive region

Resistive region

Leakage current

Loss term

$C_{\text{insulator}}$ $G_{\text{Si sub}}$

Cu SiO_2 Si
Scalable Equivalent Circuit Model of a TSV

Structural Parameters

- TSV diameter: \(d \)
- TSV-to-TSV pitch: \(p \)
- SiO2 thickness: \(t \)
- Height: \(h \)
- Bump diameter: \(D \)

Equations

- \(C_{\text{insulator}}(d,h,t) \)
- \(C_{\text{Si sub}}(d,h,p,t) \)
- \(C_{\text{Bump}}(p,D) \)
- \(G_{\text{Si sub}}(d,h,p,D) \)
- \(R_{\text{TSV}}(d,h) \)
- \(L_{\text{TSV}}(d,h,p) \)
Analysis of a TSV Channel with Insulator Thickness of TSV

- Insulator thickness of TSV (t)

- Leakage through silicon substrate dominantly increases due to lowered impedance with increased $C_{\text{insulator}}$ in region [A].

- Insulator thickness dominantly affects frequency dependent loss of a TSV channel in region [A].
Analysis of a TSV Channel with Pitch between TSVs

- Pitch between Signal & Ground TSV (p)

Due to relative small capacitance, pitch affects frequency dependent loss of a TSV channel from region [B].

From region [C], inductance effect becomes dominant.

Pitch dominantly affects frequency dependent loss of a TSV channel in region [B].
Analysis of a TSV Channel with TSV Diameter

- Via diameter of TSV (d)

Via diameter affects frequency dependent loss of a TSV channel, dominantly in region [A] and [B].
Analysis of a TSV Channel with Via Height of TSV

- Via height of TSV (h)

Via height affects frequency dependent loss of a TSV channel in all frequency ranges.
Inter-symbol Interference (ISI) by Channel Loss

- **Inter-symbol Interference** is the interference between adjacent pulses of a data
- The channel BW Limit degrades the signal quality
- It depends on line-length, data rate and sub. materials on PCB

![Graphs showing ISI effect due to line-length](image)

- **Short Channel**
 - Channel Length = 10 cm
 - 3 Gbps
 - FR4 (Loss Tangent = 0.03)

- **Long Channel**
 - Channel Length = 40 cm
 - 3 Gbps
 - FR4 (Loss Tangent = 0.03)

[ISI effect due to line-length]
Inter-Symbol Interference at the TSV Equalizer

Magnitude of S21
The Proposed TSV Equalizer using an Ohmic Contact

- We intentionally made leakage by using an **Ohmic contact** resulting in **DC attenuation** between signal and ground TSV.
Frequency Domain Simulation-based Verification of the TSV Equalizer Performance

- We successfully flattened frequency dependent loss by 3.8 dB by using TSV Equalizer.
Time Domain Simulation-based Verification of the TSV Equalizer Performance

- We successfully achieved normalized pk-pk jitter and eye-opening, 32% and 20%, meanwhile the unequalized eye is completely closed.
Time-Domain Measurement Results

- **Measured Eye-diagrams of a TSV channel**

- Data rate: 100 Mb/s
- Data Pattern: PRBS 2^{11}-1,
- Source amplitude: 1 V

- Data rate: 1 Gb/s
- Data Pattern: PRBS 2^{11}-1,
- Source amplitude: 1 V

- Data rate: 5 Gb/s
- Data Pattern: PRBS 2^{11}-1,
- Source amplitude: 1 V
Coupling Issues in Stacked Dies using TSV

1. TSV to TSV Coupling
2. TSV to Active Circuit Coupling
3. Metal to Metal Coupling

Bonding Adhesive

P-Substrate

1st Chip

2nd Chip

3rd Chip

TSV

Inductor

< CROSSSECTIONAL VIEW >
Measurement Result of Coupling between TSVs

< Top view>

< Equivalent circuit model of coupled TSV>

- Analytic model of coupling between TSVs shows good agreement with measurement result
Shielding Methods for TSV Coupling

1) Re-design of TSV materials and dimensions
2) Separation
3) Guard Ring
4) GND Shield TSV
5) Metal Ring
Shielding Effect Measurement – (1) Metal Ring

- Metal ring has shielding effect only in high frequency because it blocks coupling in IMD layer
Shielding Effect Measurement– (2) Guard Ring

- Guard ring has good shielding effect in every frequency range because guard ring structure can partly block substrate coupling between TSVs
- Main factor of coupling between TSVs is silicon substrate
Shielding Effect Measurement—(3) Guard Ring + Metal Ring

- Metal ring structure with guard ring can further decrease coupling between TSVs
Measurement Environments for Model Verification

Vector Network Analyzer (VNA)

- Measurement instrument: Agilent Technology PNA-L N5230A
- Frequency range: 10MHz ~ 20GHz
- Frequency sweep: log scale, 1601 point
- Microprobe: GGB industries inc. 40A-GS-250-P

[Cross sectional view of test sample]
Described Test Sample Images

RDL (Redistribution layer)

Dummy skip layer
coupling

GT

TSV

[Top view of test sample]

1.0 kV 9.8 mm x 300 SE(U)

[Cross sectional view of test sample]
Analysis of Noise Coupling based on the 3D TLM Model

Coupling can be divided into 3-regions

- In region A, B, and C TSV SiO₂ capacitance, silicon resistance, silicon capacitance is the dominant factor to the coupling
Substrate contact to TSV Coupling 3D TLM Model Verification by Measurement – with Distance Variation

- Proposed model’s coupling coefficient estimation is less than measurement over 1GHz

- But model follows same tendency as the distance increases
Analysis of Noise Coupling based on the 3D TLM Model – with TSV SiO₂ Thickness Variation

- TSV SiO₂ thickness determine the coupling coefficient in the region A

- If we increases TSV SiO₂ thickness, coupling coefficient decreases in the region A
Analysis of Noise Coupling based on the 3D TLM Model – with Silicon substrate Height Variation (1)

Distance between contact and TSV : 100 μm
Substrate height : 30, 70, 100 μm
TSV diameter : 30 μm
TSV SiO₂ thickness : 0.3 μm
Substrate conductivity : 10S/m

- If silicon substrate height decreases, all component value is changed
- At the whole frequency, the coupling coefficient increases as silicon substrate height increases
Analysis of Guard-ring based on the 3D TLM Model – with Guard-ring Location Variation

Distance between contact and TSV: 100 \(\mu \text{m} \)
Substrate height: 100 \(\mu \text{m} \)
TSV diameter: 30 \(\mu \text{m} \)
TSV \(\text{SiO}_2 \) thickness: 0.5 \(\mu \text{m} \)
Guard-ring distance from contact: 10 \(\mu \text{m} \)
Guard-ring width: 10 \(\mu \text{m} \)

- Guard-ring around contact shows more isolation effect compared to guard-ring around TSV

- Guard-ring around contact does not have frequency dependent isolation effect

Guard-ring distance from contact: 10 \(\mu \text{m} \)
Guard-ring width: 10 \(\mu \text{m} \)

- Guard-ring around contact shows more isolation effect compared to guard-ring around TSV

- Guard-ring around contact does not have frequency dependent isolation effect
PLL Coupling Simulation Environment

- Contact to TSV coupling model was proposed and verified in the previous chapter

- HSPICE simulation was performed using the contact to TSV coupling model and PLL schematic
- 305MHz square wave noise is coupled to TSV by the coupling coefficient

- Up to 9th harmonic frequency, coupling coefficient is almost constant
PLL phase noise shows spurs at 5MHz due to coupled 305MHz noise

PLL phase noise spur at 75MHz, 2.4GHz, 4.8GHz is due to circuit design
- Guard-ring around TSV decreased coupling coefficient

- PLL coupled noise also decreased by the guard-ring around TSV
PLL Phase Noise Degradation due to Active Circuit to TSV Coupling

- PLL phase noise spur at 5 MHz decreased by the guard-ring
- Guard-ring around TSV can improve coupling degraded circuit performance
BER Calculation in Mixed-Signal System Model

BER tester

Coupling coefficient

data from RX

raw data from TX

bit error occurs

Generated noise from digital clock

Digital noise

Coupling coefficient

Transmitter of RF Signal

RF signal

Receiver RF signal

Baseband (BER tester)

Terahertz Interconnection and Package Laboratory
In certain digital application, dimension region of TSV design parameters for acceptable BER can be obtained from the modeling of coupled TSVs.
In certain digital application, dimension region of RDL interconnects design parameters for acceptable BER can be obtained from the modeling of coupled RDL interconnects.
Dimension Region with Coupled TSV Parameters with Guard Ring

By applying guard ring structure, dimension region for acceptable BER is significantly increased

→ Target BER can be satisfied within realizable dimensions
Vertical Coupling of DDR3 to ZigBee Transceiver

Die-to-Die Vertical Coupling

Amplitude vs. Frequency

20dB/decade
40dB/decade

1/Tr

TERA
Terahertz Interconnection and Package Laboratory
• Before clock tree resonance, voltage transfer ratio is determined by C_{clock} and L_{inductor}.

• After clock tree resonance, voltage transfer ratio is determined by L_{clock} and L_{inductor}.
Investigation of Vertical Coupling Effect on VCO Spur

1 \frac{1}{A} = \frac{Z_{21}}{Z_{11}} = \frac{V_2/I_1}{V_1/I_1} = \frac{V_2}{V_1}

20\log(V_1 \frac{1}{A})dB = 20\log(V_2)dB

20\log(V_1)dB + 20\log(\frac{1}{A})dB

= 20\log(V_2)dB

- Main mechanism of spur generation is high-frequency multiplicative noise
- To reduce the spur at 10MHz offset from center frequency, design guide has to be proposed.
Investigation of Design Guide for Spur Reduction (Epoxy Thickness)

- Spurs at 5MHz and 10MHz offset from center frequency satisfy the spur spec of ZigBee system.
- Increasing epoxy thickness is highly effective for spur reduction.
- TSV is the most critical interconnection structure in 3D IC.

- TSV can cause significant channel loss for high-speed signaling.

- Equalizer or specific I/O schemes are needed to support low power and high-speed data transmissions.

- Crosstalk and coupling between TSV and active circuit need to be considered when designing the TSV arrangement configurations.

- Shielding structures are needed to reduce the TSV crosstalks and noise couplings.