Copyright (c) 2008 by Levent Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the written permission of the copyright holder(s).

1. Consider a negative unity-feedback control system with the open-loop transfer function

$$
\begin{equation*}
G(s)=K \frac{(s+2)(s+5)}{s^{2}} \tag{25pts}
\end{equation*}
$$

Determine the range of the constant K, such that the 5% settling-time is less than 3 seconds.
2. Consider the following feedback control system.

Determine the simplest controller $D(s)$ amongst P, I, or PI controllers, such that the maximum percentovershoot is less than 10%, the 5% settling-time is less than 1 s , and the steady-state error is zero for a step input.
3. Consider the negative-feedback control-system with the following open-loop transfer-function. Construct the root-locus diagram. Determine all the important features like asymptotes, break-away and/or break-in points, imaginary-axis crossings, angles of departure and/or arrival.

$$
G(s)=K \frac{s^{2}+4 s+5}{s(s+10)\left(s^{2}+2 s+2\right)}
$$

4. Sketch the root-locus diagram for the following control system.

Copyright (c) 2008 by Levent Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the written permission of the copyright holder(s).

1. Consider a negative unity-feedback control system with the open-loop transfer function

$$
G(s)=K \frac{(s+2)(s+5)}{s^{2}}
$$

Determine the range of the constant K, such that the 5% settling-time is less than 3 seconds.

Solution: Since the 5% settling time $t_{5 \% s}=\left(3 / \sigma_{o}\right)$; we have

$$
t_{5 \% s}=\frac{3}{\sigma_{o}}<3
$$

$\sigma_{o}>1$, or the poles need to be on the left-hand-side of the $\Re[s]=-\sigma_{o}=\sigma=-1$ vertical line. One way to determine the conditions for the poles to be on the left-hand-side of a vertical line is to use the Routh-Hurwitz's Table after shifting the vertical line from the $\sigma=0$ line to the desired line.

The closed-loop poles are determined from the factors of the characteristic polynomial or the denominator of the closed-loop transfer function. In our case, the characteristic equation is

$$
1+G(s)=1+K \frac{(s+2)(s+5)}{s^{2}}=\frac{s^{2}+K(s+2)(s+5)}{s^{2}}=0
$$

and the characteristic polynomial becomes

$$
q_{\mathrm{c}}(s)=s^{2}+K(s+2)(s+5) .
$$

If we use the Routh-Hurwitz's Table on this polynomial, we would determine the conditions for the poles to be on the left-hand-side of the $\sigma=0$ vertical line. To determine the conditions for the left-hand-side of the $\sigma=-1$ line, we need to shift the characteristic polynomial, such that

$$
\begin{aligned}
q_{\mathrm{c}}(s-1) & =(s-1)^{2}+K((s-1)+2)((s-1)+5) \\
& =(K+1) s^{2}+(5 K-2) s+(4 K+1)
\end{aligned}
$$

With the new polynomial, the Routh-Hurwitz's Table becomes as given below.

s^{2}	$K+1$	$4 K+1$
s	$5 K-2$	
1	$4 K+1$	

Applying the Routh-Hurwitz's criterion on the new polynomial gives the conditions for the left-handside of the $\sigma=-1$ line. The s^{2}-term gives

$$
K+1>0, \text { or } K>-1
$$

The s-term gives

$$
5 K-2>0, \text { or } K>0.4
$$

The 1-term gives

$$
4 K+1>0, \text { or } K>-0.25 .
$$

Therefore, from the intersection of all the regions, we get

$$
K>0.4 .
$$

2. Consider the following feedback control system.

Determine the simplest controller $D(s)$ amongst P, I, or PI controllers, such that the maximum percentovershoot is less than 10%, the 5% settling-time is less than 1 s , and the steady-state error is zero for a step input.

Solution: The performance requirements are listed below, where

$$
G(s)=\frac{2}{s+1},
$$

and

$$
\begin{aligned}
& D(s)=K_{p} \\
& D(s)=\frac{K_{I}}{s}
\end{aligned}
$$

or

$$
D(s)=K_{P}+\frac{K_{I}}{s}=K_{P} \frac{s+K_{I} / K_{P}}{s} .
$$

Given Requirements	General System Restrictions	Specific System Restrictions
The steady-state error is zero for a step input.	$G(s) D(s)$ has a pole at 0.	$D(s)=\frac{K_{I}}{s}$ or $D(s)=K_{P} \frac{s+K_{I} / K_{P}}{s} .$
The maximum percent overshoot is less than 10%.	$e^{-\left(\varsigma / \sqrt{1-\zeta^{2}}\right) \pi}<M_{p_{\text {given }}},$ or $\zeta>\frac{\left\|\ln \left(M_{p_{\text {given }}}\right)\right\|}{\sqrt{\left(\ln \left(M_{p_{\text {given }}}\right)\right)^{2}+(\pi)^{2}}} .$	$\zeta>0.59$.
The 5% settling-time is less than 1 second.	$\begin{array}{ll} \text { or } & \frac{3}{\sigma_{0}}<t_{5 \% s_{\mathrm{gIven}}}, \\ & \sigma_{0}>\frac{3}{t_{5 \% s_{\mathrm{given}}}} . \end{array}$	$\sigma_{0}>3$.

In order words, from the steady-state error requirement, we conclude that the P controller won't work. The s-plane region for the dominant closed-loop poles from the inequalities, $\zeta>0.59$ or $\alpha<\cos ^{-1}(\zeta)=53.84^{\circ}$ and $\sigma_{o}>3$ or $\sigma<-3$ is given in the following figure.

The next simpler controller is the I controller. However, when we have

$$
D(s) G(s)=K_{I} \frac{2}{s(s+1)},
$$

the root-locus diagram doesn't go through the desired region as we can see from the following sketch.

With the PI controller, we have an extra zero to pull the root-locus branches towards the desired region, where

$$
D(s) G(s)=K_{P} \frac{2\left(s+K_{I} / K_{P}\right)}{s(s+1)}
$$

Since a lot of choices for the zero would work, one possible choice is $K_{I} / K_{P}=4$. For that choice, the radius is $r=\sqrt{(-4-0)(-4-(-1))}=\sqrt{12}$, and the intersection of the root-locus branch and the $\{\sigma=-3\}$ line is at $s=-3 \pm j \sqrt{11}$. The gain at $s=-3 \pm j \sqrt{11}$ can be determined from the magnitude condition, such that

$$
|D(s) G(s)|_{s=-3+j \sqrt{11}}=\left|K_{P} \frac{2(s+4)}{s(s+1)}\right|_{s=-3+j \sqrt{11}}=1,
$$

or $K_{P}=2.5$. Therefore, any $K_{P}>2.5$ satisfies the requirements. By the way, we can also check the $\left\{\alpha<53.84^{\circ}\right\}$ requirement, where $\alpha=\tan ^{-1}(\sqrt{11} / 3)=47.87^{\circ}$.

One possible choice is $K_{P}=3>2.5$ and $K_{I}=4 K_{P}=12$. Therefore, the simplest controller is a PI controller, and one such controller is

$$
D(s)=3+\frac{12}{s} .
$$

The actual condition satisfying the $\{\sigma<-3\}$ requirement is $K_{I}>3\left(K_{P}-1\right)$.
3. Consider the negative-feedback control-system with the following open-loop transfer-function. Construct the root-locus diagram. Determine all the important features like asymptotes, break-away and/or break-in points, imaginary-axis crossings, angles of departure and/or arrival.

$$
G(s)=K \frac{s^{2}+4 s+5}{s(s+10)\left(s^{2}+2 s+2\right)}
$$

Solution: First, we sketch the pole-zero locations and the real-axis portion of the root-locus diagram. Then, we decide the important features to be determined.

Need to determine:

- Asymptotes,
- Break-away point, and
- Angles of departure and arrival.

Asymptotes

Real-Axis Crossing: $\sigma_{a}=\frac{\sum p_{i}-\sum z_{i}}{n-m}$
The real-axis crossing of the asymptotes is at

$$
\sigma_{a}=\frac{\sum_{i} p_{i}-\sum_{i} z_{i}}{n-m}=\frac{((-10)+(-1+j)+(-1-j)+(0))-((-2+j)+(-2-j))}{4-2}=-4
$$

Real-Axis Angles: $\theta_{a}= \pm(2 k+1) \pi /(n-m)$
The angles that the asymptotes make with the real axis are determined from

$$
\theta_{a}=\frac{ \pm(2 k+1) \pi}{n-m}=\frac{ \pm(2 k+1) \pi}{4-2}= \pm \frac{\pi}{2}
$$

Break-Away Point: $\mathrm{d} K / \mathrm{d} s=0$

From the characteristic equation,

$$
\begin{gathered}
1+G(s)=0 \\
1+K \frac{s^{2}+4 s+5}{s(s+10)\left(s^{2}+2 s+2\right)}=0
\end{gathered}
$$

and

$$
-K=\frac{s(s+10)\left(s^{2}+2 s+2\right)}{s^{2}+4 s+5}
$$

Therefore,

$$
-\frac{\mathrm{d} K}{\mathrm{~d} s}=\frac{2\left(s^{5}+12 s^{4}+58 s^{3}+124 s^{2}+110 s+50\right)}{\left(s^{2}+4 s+5\right)^{2}}
$$

and for $\mathrm{d} K / \mathrm{d} s=0$, the equation

$$
s^{5}+12 s^{4}+58 s^{3}+124 s^{2}+110 s+50=0
$$

gives $s=-2.9753$ and two sets of complex poles. So, the only break-away point is at $s=$ -2.9753 .

Angles of Departure: $\sum \measuredangle(\cdot)= \pm(2 k+1) \pi$
The angles of departure from complex open-loop poles are determined from the angular conditions about the open-loop poles. Therefore, the angular condition about $s=-1+j 1$ is

$$
\begin{aligned}
& -\measuredangle(s-(-10))+\measuredangle(s-(-2+j 1))+\measuredangle(s-(-2-j 1)) \\
& -\measuredangle(s-(-1+j 1))-\measuredangle(s-(-1-j 1))-\measuredangle(s-(0))=180^{\circ}+k 360^{\circ}, \\
& -\tan ^{-1}\left(\frac{(1)-(0)}{(-1)-(-10)}\right)+\tan ^{-1}\left(\frac{(1)-(1)}{(-1)-(-2)}\right)+\tan ^{-1}\left(\frac{(1)-(-1)}{(-1)-(-2)}\right) \\
& -\theta_{\mathrm{dep}}-\tan ^{-1}\left(\frac{(1)-(-1)}{(-1)-(-1)}\right)-\tan ^{-1}\left(\frac{(1)-(0)}{(-1)-(0)}\right)=180^{\circ}+k 360^{\circ},
\end{aligned}
$$

or

$$
-6.34^{\circ}+0^{\circ}+63.435^{\circ}-\theta_{\mathrm{dep}}-90^{\circ}-135^{\circ}=180^{\circ}+k 360^{\circ}
$$

As a result,

$$
\theta_{\mathrm{dep}}=12.095^{\circ} .
$$

Angles of Arrival: $\sum \measuredangle(\cdot)= \pm(2 k+1) \pi$
The angles of arrival to complex open-loop zeros are determined from the angular conditions about the open-loop zeros. Therefore, the angular condition about $s=-2+j 1$ is

$$
\begin{aligned}
& \begin{array}{r}
-\measuredangle(s-(-10))+\measuredangle(s-(-2+j 1))+\measuredangle(s-(-2-j 1)) \\
\\
-\measuredangle(s-(-1+j 1))-\measuredangle(s-(-1-j 1))-\measuredangle(s-(0))=180^{\circ}+k 360^{\circ}, \\
-\tan ^{-1}\left(\frac{(1)-(0)}{(-2)-(-10)}\right)+\theta_{\operatorname{arr}}+\tan ^{-1}\left(\frac{(1)-(-1)}{(-2)-(-2)}\right) \\
-\tan ^{-1}\left(\frac{(1)-(1)}{(-2)-(-1)}\right)-\tan ^{-1}\left(\frac{(1)-(-1)}{(-2)-(-1)}\right)-\tan ^{-1}\left(\frac{(1)-(0)}{(-2)-(0)}\right)=180^{\circ}+k 360^{\circ},
\end{array}
\end{aligned}
$$

or

$$
-7.125^{\circ}+\theta_{\text {arr }}+90^{\circ}-180^{\circ}-116.565^{\circ}-153.435^{\circ}=180^{\circ}+k 360^{\circ} .
$$

As a result,

$$
\theta_{\text {arr }}=-172.875^{\circ} .
$$

With the features determined, we can now sketch the root-locus diagram.

4. Sketch the root-locus diagram for the following control system.

Solution: The sketch of the location of the closed-loop poles is the root-locus diagram. However, in this case the open-loop gain of the system is

$$
G(s) H(s)=\left(\frac{K}{s+K}\right)\left(\frac{s-1}{s^{2}+1}\right)=\frac{K(s-1)}{(s+K)\left(s^{2}+1\right)},
$$

where the root-locus variable K is not a multiplicative coefficient of the open-loop gain. So, we need to convert the problem into the conventional form while preserving the location of the closed-loop poles the same. The closed-loop poles are obtained from the characteristic equation, where

$$
1+G(s) H(s)=0,
$$

or

$$
\begin{gathered}
1+\frac{K(s-1)}{(s+K)\left(s^{2}+1\right)}=0, \\
\frac{(s+K)\left(s^{2}+1\right)+K^{\prime}(s-1)}{(s+K)\left(s^{2}+1\right)}=0, \\
(s+K)\left(s^{2}+1\right)+K(s-1)=0, \\
s^{3}+K s^{2}+K s+s=0 .
\end{gathered}
$$

We need to regroup the characteristic equation, so that the characteristic equation is in the form

$$
1+K \frac{n(s)}{d(s)}=0
$$

for some polynomials $n(s)$ and $d(s)$. So,

$$
\begin{gathered}
s^{3}+K s^{2}+K s+s=0 \\
\left(s^{3}+s\right)+K\left(s^{2}+s\right)=0, \\
\frac{\left(s^{3}+s\right)+K\left(s^{2}+s\right)}{\left(s^{3}+s\right)}=0, \\
1+K \frac{s^{2}+s}{s^{3}+s}=0
\end{gathered}
$$

Therefore, the new open-loop gain

$$
G^{\prime}(s) H^{\prime}(s)=K \frac{s^{2}+s}{s^{3}+s}=K \frac{s(s+1)}{s\left(s^{2}+1\right)}=K \frac{s+1}{s^{2}+1}
$$

generates the same closed-loop poles as the original open-loop gain, but the open-loop gain $G^{\prime}(s) H^{\prime}(s)$ of the new system is in the usual form for the generation of the root-locus diagram. In other words, the locations of the closed-loop poles based on the open-loop gains $G(s) H(s)$ and $G^{\prime}(s) H^{\prime}(s)$ are identical, however we can use the regular root-locus drawing techniques on the primed system.

We observe that we have the two-pole one-zero case, where the portion of the root-locus diagram outside of the real axis is on a circle with the center at the zero,

$$
\text { center }=z=-1,
$$

and the radius that is the geometric mean of the distances of the poles from the zero,

$$
\text { radius }=\sqrt{\left(p_{1}-z\right)\left(p_{2}-z\right)}=\sqrt{((j)-(-1))((-j)-(-1))}=\sqrt{2} .
$$

Therefore,

