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1. (a) Describe and sketch the s-plane region specified by the following requirements for a second-order
system described by Y (s)/U(s) = w2/(s% + 2¢wns + w?). (15pts)

Maximum percent overshoot 10% < M, < 20%.
2% settling time ty9,, < 2.

(b) Consider a second-order system with no zero, such that its poles are located in the region described

as above. Determine the largest possible peak-time of the system. (15pts)
2. For the following feedback control system, design the simplest controller D(s) that would track a step
reference-input r and reject a sinusoidal disturbance-signal d with a frequency of 5rad/s. (25pts)

d

T <|> € D(s) s-:l + Yy

3. Consider a negative unity-feedback control system with the open-loop transfer function

1
G(s)=K .
(s) 254 + 83 + 652 + 3s
(a) Determine the range of K for the asymptotical stability of the closed-loop system. (15pts)
(b) Determine the steady-state errors for the unit-ramp and the unit-parabolic inputs. (10pts)

4. For the following open-loop pole/zero locations, sketch ezpected root-locus diagrams. Do not determine
any features of the diagram, except the asymptote angles. Simply show the expected shapes of all the
root-locus branches including the angles of departure from the real axis. (20pts)
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1. (a) Describe and sketch the s-plane region specified by the following requirements for a second-order

system described by Y (s)/U(s) = w2/(s? 4+ 2(wns + wy).

Maximum percent overshoot
2% settling time

Solution:

t2%s S 2s.

10% < M, < 20%.

Given Specifications

System Constraints

Geometrical Representations

10% < M, < 20%.

0.1 < e (V1=3)m <9,

|In(0.2)]
(In(0.2))* + ()*
<c< [In(0.1)]

(ln([).l))2 + (7r)2
or
0.46 < ¢ < 0.59;

since M, = e~ (¢/V1=¢)" and

¢ = |In(My)|/4/ (In(Mp))* + ().

3

cos }(0.59) < a < cos™1(0.46)

or
53.76° < a < 62.87°,

where a = cos™!(¢) is the angle
measured from the negative real
axis.

tz%s S 2s.

4
- S 27
Oo
or
g0 22

since tons = 4/00.

g < =2

since the poles are at
§ = —0o % jwq

The shaded region describes the region specified by the given requirements.
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A jw s-plane
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(b) Consider a second-order system with no zero, such that its poles are located in the region described
as above. Determine the largest possible peak-time of the system.

Solution: The peak-time of the system is given by

™

t, =
Ly

The largest peak-time is when we have the smallest wg. From the shaded region of the sketch
in the previous part, we realize that the smallest possible imaginary value of the poles is at the
intersection of the radial line with the angle of 53.76° with respect to the negative real axis and

the vertical line at o = —2. From the geometry, we determine that
tan(53.76°) = wcsz
and
s v

t = = :
Pmax ™ Wa,,  2tan(53.76°)

or the largest possible peak time of the system is 1.15s.
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3. Consider a negative unity-feedback control system with the open-loop transfer function

1
=K .
254 4+ 83 4+ 652 + 3s

G(s)
(a) Determine the range of K for the asymptotical stability of the closed-loop system.

Solution: The stability of the closed-loop system can be determined using the Routh-Hurwitz’s
stability criterion on the characteristic polynomial. From the characteristic equation, 1+ G(s) =

0.
1

254 + 53+ 652 + 35

1+ K

)

or
26 + 2 +6s2+3s+ K =0.

The Routh-Hurwitz table for the system becomes as given below.

st 2 6 K
s8 1 3

2| 2B ; (1)(6) _ 0 K

1

We have encountered the case where the first element of one of the Routh-Hurwitz table rows is
zero and there are other nonzero elements on the same row. In this case, there are two possible
methods to finish up the Routh-Hurwitz table.

First Method:
One method is to replace the leading zero with € > 0, and let ¢ N\, 0 for determining the

stability.
st 2 6 K
s3 1 3

_(2)3) - (1)(6)

g
()(K) = (£)(3)

£

S _

1 K

The Routh-Hurwitz’s stability criterion implies the following conditions as € \, 0.

i li\r‘r(l)(—(K —3e)/e) >0,0r K <O0.
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ii. K >0.

Since the two conditions do not have a common region or a non-empty intersection, there
is no value of K that will stabilize the system asymptotically.

Second Method:
Another method is to apply a bijection mapping on the roots of the characteristic polynomial
such that they do not map from the left-half plane to the right-half plane or vice versa. One
such mapping is s — 1/s’ for s # 0. So the roots of the characteristic equation

25t + 83+ 652 +3s+ K =0,

and the roots of
2(1/3')4 + (1/3')3 + 6(1/3')2 +3(1/s )+ K =0

or
2+ +65%+3s + K =K' 4352 4652 +5 +2=0

have the same stability characteristics. So, we can apply the Routh-Hurwitz criterion on the
mapped polynomial.

8'4 K 5 i
313 3 )
#2 | —((K)1) - (3)6) =18-K 6
g | B -(8-K)1) K
18- K 18- K
1 6

The Routh-Hurwitz’s stability criterion on the new polynomial implies the following condi-
tions.

i. K>0.
ii. 18— K >0or K < 18.
iii. (—K/(18—K)) > 0, but since 18 — K > 0 from the previous condition —K > 0, or K < 0.

Similar to the first method, the conditions do not have a a non-empty intersection, so there
is no value of K that will stabilize the system asymptotically.

(b) Determine the steady-state errors for the unit-ramp and the unit-parabolic inputs.

Solution: Since the system is unstable for any value of K, the output will increase exponentially.
As a result, the error between an exponentially increasing signal and a step or ramp signal will
be infinity. The expressions for steady-state errors cannot be used in this case, because those
expressions are valid for stable systems. Therefore, the steady-state errors for the unit-ramp
and the unit-parabolic inputs are infinity.
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4. For the following open-loop pole/zero locations, sketch ezpected root-locus diagrams. Do not determine
any features of the diagram, except the asymptote angles. Simply show the expected shapes of all the
root-locus branches including the angles of departure from the real axis.
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