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1. Consider a unity-feedback control system with the open-loop transfer function

2 ~4s+ 13

G = T e+ s +5)

Determine the range of K for the asymptotical stability of the closed-loop system. (20ptsi
2. Consider a unity-feedback control system with the open-loop transfer function

s2+10s+50 s°+10s+50
s2(5 4 10)(s + 15) s +25s% 4 1508

G(s)=K

Construct the root-locus diagram. Determine all the important necessary features like asymptotes. break-
away and/or break-in points. imaginary-axis crossings. and angle of arrivals and departures. [25pts]

3. Consider the following control system.,

. D) ,‘ (s +21) .
| g+ 1){s +2){s + 20} W

Y«

{a) Design a first order compensator D{s) = Di(s). such that the stcady state error is zero for a step
input without increasing the order of the system. If there exists a freedom of choice in the location
of the compensator poles and/or zeros, choose to minimize the settling time. {20pts]

{b} Design another first order compensator Dy(s) cascaded to the previous compensator, ie Disy =
D1(s)Dy(s). such that the desired dominant closed-loop poles are at sq = —4 £ ;2. {20pts)

(¢} Design a different compensator D(s) for the original system. such that the non-zero and finite steady
tate error is decreased by 5 times with minimal cffect on the existing closed-loop poles. Assume
that ti:e slowest physically realizable stable pole of the compensator 15 at —0.01. [1opts!
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1. Consider a unity-feedback control system with the open-loop transfer function

s2 —4s5+ 13

Gls) = K DG+ 06T5)

Determine the range of K for the asymptotical stability of the closed-loop system.

Solution: The stability of the closed-loop system can be determined using the Routh-Hurwitz’s stability
criterion on the characteristic polynomial. From the characteristic equation, 1 + G(s) =0,

82 — 45+ 13
1+ K =
R T e sy

(s+1)(s+4){s+5) + K(s* —4s +13) = 0,
ar
s° + (10 + K)s® + (29 — 4K)s + (20 + 13K) = 0.

The Routh-Hurwitz table for the system becomes as given below.

53 1 20 — 4K
82 10+ K 20 + 13K
o 1 _()(20 +13K) — (10 + K)(29 - 4K)

100+ K
1 20 + 13K

The Routh-Hurwitz’s stability criterion implies the following conditions.
(a) 10+ K > 0.

~10< K |} -
K > -10.

—20 =10 L] 10 20 e
(1)(20 + 13K} — (10 + K)(29 — 4K)

> 0.
100+ K

(b) —
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i. 10+ K > 0 Case:

— ({1){20 + 13K) — (10 + K)(29 — 4K)) > 0.
(20 + 13K) — (290 — 11K — 4K?) < 0.
4K? + 24K - 270 < 0.

4(K + 11.7464){ K — 5.7464) < 0, ] 117464 < K < 5 7454
or : . =
—20 +10 0 10 0 K
—11.7464 < K < 5.7464. -11..7454 5.7464

ii. 10+ K < 0 Case:

This case results in instability from the pre-
vious condition.

(c) 20 + 13K > 0.

13K > =20. ~1s385 < K| -

Y

=

K> —% = —1.5385. R ° ' ®

—1.5385

The intersection of all these regions leads to

—1.5385 < K < 5.7464.

-1 < K

—11.7464 < K < 5.7464

—1.5385 <« K

~20 ~10 010 20 K

—1.5385 5.7464

2. Consider a unity-feedback control system with the open-loop transfer function

§% + 10s + 50 5% 4+ 10s + 50
G(s)=K =K .
(s) 82(s + 10)(s + 15) 5% + 2555 + 15052

Construct the root-locus diagram. Determine all the important necessary features like asymptotes, break-
away and/or break-in points, imaginary-axis crossings, and angle of arrivals and departures.
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Solution: First, we sketch the pole-zero locations and the real-axis portion of the root-locus diagram.

Then, we decide the important features to be determined.

Need to determine:

¢ Asymptotes,
¢ Breakaway point, and
¢ Angle of Arrival.

Jut

_J'5

There i3 no need to determine the imaginary axis cross-
ings, since the branches leave the poles at s = 0 with the
phase angle of +(7/2), and the zeros pull these branches
inwards.

Breakaway Point: (fi_I: =0

From the characteristic equation,

1+G(s) =0,
2
L+ K34S+ ;5i23++155’gs2 =0
and
e st + 2553 + 15057
52 +10s + 50
Therefore,

dK _ (4s® + 7552 + 300s)(s® + 10s + 50) — (s* + 25s° + 150s%)(2s + 10)

—15

- 1%

ds (s% + 10s + 50)2

_ s(2s* + 555 + 700s* + 52505 + 15000)
B (52 + 10s + 50)2

and for dK/ds = 0, the equation

3(2s* + 555% + 7005 + 52505 + 15000) = 0

gives

s = —12.4240,

s = —5.4831,

s = —4.7965 £ 79.3322,
and

s=0.

The break-away point is the solution between —15 and —10 which is s = —12.4240.

L —35
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Asymptotes
Real-Axis Crossing: g, = —Z—&;&
n—m
So, the real-axis crossing of the asymptotes is at
_ Zi - Z,; Z
Og = 7 ———,
n—m
_ {0) +(0) + (=10) + (=15)) — (=5 + 55) + (=5 — 55))
4-2 ’
—-15
=5 = ~7.5.
+
Real-Axis Angles: ¢, = 2k + Lm
n-—m

So, the angles the asymptotes make with the real axis are determined from

+(2k + D7
B, = —— 1
n—m
2k + D L7
T o4-32 T Ty

Angle of Arrival: > £L() =£(2k+ )7

The angles of arrivals to complex open-loop zeros are determined from the angular conditions
about the open-loop zeros. Therefore, the angular condition about s = -5+ 35 is

(£(s = (=54 75)) + £(s — (=5 — j5)))
—(L(s = (=15)) + £(s — (—10)) + £(s) + £(s)) = 180° + k360°,

(e (=) = (=) + 27 (57 0)
= 180° + k360°,
or
(Bars + 90°) — (26.5651° + 45° + 2x135°) = 180° + k360°.
As a result,
farr = T1.5651°.

With the features determined, we can now sketch the root-locus diagram.
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71.5651°

a Y

—-12.4240 ___
L 55

3. Consider the following control system.

{s +21)
{3+ 1){s + 2}{s + 20)

Y

D(s)

(a) Design a first order compensator D(s) = Di{s}, such that the steady state error is zero for a step
input without increasing the order of the system. If there exists a freedom of choice in the location
of the compensator poles and/or zeros, choose to minimize the settling time.

Solution: The form of the controller D(s) = D;(s) can be obtained from the desired requirements.

Given Requirements General System Restrictions | Specific System Restrictions

The steady state error is
zero for a step input
without increasing the
order of the system

1 For every pole or zero
Di(s) = ;Di(s)- required in D1, another pole
or zero should be canceled.

Minimize the settling Choose the slowest pole to | Try to cancel the poles at
time, if there is a choice cancel. -1, =2, or —20 in that order.
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The simplest choice from the above requirements leads to
s+1

bl

Dl(s) =K

8
where the resulting root-locus diagram is given below.

1 Jw
-21 -20 -2 % o
¥

As we observe from the figure, the system is stable for K > 0. Therefore, the desired controller
is
s+1

1

D(s)=D(s)=K .
where K > 0.

(b) Design another first order compensator D2(s} cascaded to the previous compensator, i.e. D(s) =
D1 (s)Da(s), such that the desired dominant closed-loop poles are at s = —4 £ 72, and the system
order is still preserved.

Solution: For

5+
3

D(s) = Dy(s)Dals) = K1 Dy (s),

the open loop gain is

s+ 21

Gls)D(s) = KD2(s) 5y

Jw

P SV k
et L L Eal

-21 -2 -4 -2

ay
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The deficiency angle, ¢, at s4 is calculated from the angular condition.

¢ — L(sqg— (0)) — £(sq — (=2)) — L84 — {—20)) + L(sq ~ (-21)) = (2k + 1},

- (2) - (0 - 2) =) N _ jepe o
- (=) + o (o) = 0 4o

¢ — 153.43° — 135° - 7.13° + 6.71° = 180° + k360°,

or ¢ = 108.85°.

In order to preserve the system order, we need to cancel a pole or zero and place another one
in such a way that the pole-zero combination provides the necessary deficiency angle at s4. The
best choice for cancelation is the pole at -2, since the pole at zero satisfies the steady state error
requirement. and the pole at —20 and the zero at —21 are teo far away.

2tan(63.85°) = 4.07 = pole = -4 — 4.07 = -8.07

From the above analysis,

s+ 2
s+ 8.07

And the magnitude K is obtained from the magnitude condition at sq4.
|G(s}D(s)| =1,

a=34

Dq(s) =

s+ 21
s(s + 8.07)(s + 20)

=1,
s=—4+;2

%

or K = 19.1043. Therefore,

s+1 s+2
D{s) = 19.1043( S ) (s+8‘07)’

{c¢) Design a different compensator D(s) for the original system, such that the non-zerc and finite steady
state error is decreased by 5 times with minimal effect on the existing closed-loop poles. Assume
that the slowest physically realizable stable pole of the compensator is at —0.01.
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Solution: The system is type 0 without D(s), so the non-zero and finite steady-state error coefficient
is K, and

Since egesired (00) = (1/5)e(c0),

1 Y5
1 + Kpdesired a 1 + Kp ,

ar
Kpdesired = 5(1 + Kp) - ]'

From the definition of K,

Ky = lim (G(s)D(s)) = (21)

&t m@E) -

and K, . ., = 6.625. To increase K, to Kp,,,. .4, we need to have a lag compensator with gain
Ky, 6.625
=S Pdesired — — 12'62.
pz Ky 0.525

Assuming 3 = 13, the lag compensator becomes

s+ 1/T

Pl = ey

To have the minimal effect on the existing poles, the pole and the zero of the compensator should
be as close as possible to each other. We can accomplish this necessity by choosing the pole and
the zero very close to zero. Since the slowest pole of the compensator should be at —0.01; the
best we can do is to choose —1/(3T) = —0.01, or T = 7.69. Therefore,

s+ 0.13
Dis) = 21722
)= ST00

is one possible compensator.



