

Exam#2
75 minutes

EE 231

March 14, 1989

1. The field of a DC servomotor is excited by means of and amplifier with gain $K_A = 90$ volts/volt as shown in Figure 1. The field has an inductance of L = 2 Henry's, and a resistance of R = 50 ohms.

Figure 1:

(a) Calculate the time constant of this system. (5pts.)

(b) Determine the 5% settling time for a unit step input voltage. (5pts.)

To improve the time behavior of the system, a voltage proportional to the field current is fed-back to the amplifier input as shown in Figure 2.

Figure 2:

- (c) Determine the feedback proportionality constant k to reduce the time constant to 4 milliseconds. (10pts.)
- (d) Find the sensitivity of the transfer function with respect to k for the k determined in part (1c) and for $\omega = 50$. (10pts.)
- (e) Determine the steady state error voltage when the input voltage is a unit step. (5pts.)

2. A feedback system employing an output rate damping is shown in Figure 3.

Figure 3:

- (a) In the absence of the derivative feedback ($K_H = 0$), determine the damping ratio, the natural frequency, the rise time and the 2% settling time for the unit step response. (10pts.)
 - (10 pub.)
- (b) Calculate the steady state error (with $K_H = 0$) resulting from a unit ramp input. (5pts.)
- (c) Determine the derivative feedback constant K_H which will give a damping ratio equal to 0.6. (10pts.)
- (d) Determine the steady state error to a unit ramp input with this value of K_H . (5pts.)
- (e) Compute the parameters K_A and K_H again to maintain a damping ratio of 0.6, while reducing the steady state error to a unit ramp input to the value calculated in part (2b). (15pts.)
- 3. A system oscillates with a frequency ω , if it has poles at $s_{1,2} = \pm j\omega$ and no right half-plane poles. For the system shown in Figure 4, choose K and T, so that the system oscillates with frequency $\omega = 3$ rad/sec. (20pts.)

Figure 4:

#1 91, Time countent = 40 m see
by 5% settling time $t_s = 120$ m see

ch k = 0.1 $d_1 = \frac{9\sqrt{267}}{52}$

 $e_{11} e_{55} = 0.1$

#2. $q_{11} \zeta = \frac{\sqrt{10}}{10} \approx 0.316$; $w_{11} = \sqrt{10} \approx 3.162$

tr = 0.631 sec 2% settling time ts = 4 sec

b11 855 = 0.2

c, Ky ≈ 1-795

...dy ess = 0.379 _____

e, K+=5.2 , KA=36

+3 K=7 , T=10/9