Copyright (c) 1998 by Levent Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the written permission of the copyright holder(s).

1. Determine the system equation relating the output y to the input r for the following block diagram. The final expression should contain derivative terms and no integral terms.
(20pts)

2. Consider the unit-pulse function p, where

$$
p(t)= \begin{cases}0, & \text { if }-2 \leq t \leq-1 ; \\ 1, & \text { if }-1<t<1 \\ 0, & \text { if } 1 \leq t \leq 2\end{cases}
$$

Determine the trigonometric fourier series expansion of p for $-2 \leq t \leq 2$. Simplify the expression as much as possible.
(25pts)
3. Consider the following functions, ϕ_{1}, ϕ_{2}, and ϕ_{3}.

$$
\begin{gathered}
\phi_{1}(t)=1 \text { for }-2 \leq t \leq 2 . \\
\phi_{2}(t)= \begin{cases}-1, & \text { if }-2 \leq t<0 ; \\
1, & \text { if } 0 \leq t \leq 2 .\end{cases} \\
\phi_{3}(t)= \begin{cases}-1, & \text { if }-2 \leq t<-1 ; \\
1, & \text { if }-1 \leq t<1 ; \\
-1, & \text { if } 1 \leq t \leq 2 .\end{cases}
\end{gathered}
$$

(a) Verify that ϕ_{i} for $i=1,2,3$ are orthogonal with respect to the inner product

$$
\langle f, g\rangle=\int_{-2}^{2} f(t) g(t) \mathrm{d} t .
$$

(05pts)
(b) Find and plot the best representation of the function x, where

$$
x(t)= \begin{cases}0, & \text { if }-2 \leq t<0 \\ 1, & \text { if } 0 \leq t<1 \\ 0, & \text { if } 1 \leq t \leq 2\end{cases}
$$

as a linear combination of ϕ_{i} for $i=1,2,3$, such that the error based on the associated norm

$$
\|f\|=\left[\int_{-2}^{2}(f(t))^{2} \mathrm{~d} t\right]^{1 / 2}
$$

is minimized.
4. For the following functions, h and x, determine and plot the convolution function $(h * x)$.
$h(t)= \begin{cases}1, & \text { if }-2 \leq t<0 ; \\ 0, & \text { elsewhere } .\end{cases}$
$x(t)= \begin{cases}1, & \text { if } 0 \leq t<1 ; \\ 0, & \text { elsewhere } .\end{cases}$

\#2

$$
\begin{aligned}
& x(t)=\left\{\begin{array}{cc}
0 & -2 \leq t \leq-1 \\
1 & -1<t<1 \\
0 & 1
\end{array} \leq t \leq 2\right.
\end{aligned}
$$

$$
\begin{aligned}
a_{0} & =\frac{1}{2} \int_{-1}^{1} d t=1 \\
b_{n} & =\frac{2}{4} \int_{-2}^{2} x(t) \sin \left(\frac{\pi}{2} n t\right) d t \\
& =\frac{1}{2} \int_{-1}^{1} \sin \left(\frac{\pi}{2} n t\right) d t \\
& =\frac{1}{2}\left[-\frac{1}{\pi / 2} \cos \left(\frac{\pi}{2} n t\right)\right]_{t=-1}^{1}, n \neq 0 \\
& =0 \\
x(t) & =\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{\pi n} \sin \left(\frac{\pi}{2} n\right) \cos \left(\frac{\pi}{2} n t\right)
\end{aligned}
$$

Nok: for $n=4 k, \frac{2}{\pi 4 k} \sin \left(\frac{\pi}{2} 4 k\right)=\frac{1}{2 \pi k} \sin (2 \pi k)$

$$
\begin{aligned}
n=4 k+1, \frac{2}{\pi(4 k+1)} \sin \left(\frac{\pi}{2}(4 k+1)\right) & =\frac{2}{\pi(4 k+1)} \sin \left(2 \pi k+\frac{\pi}{2}\right) \\
& =\frac{2}{\pi(4 k+1)} \\
n=4 k+2, \frac{2}{\pi(4 k+2)} \sin \left(\frac{\pi}{2}(4 k+2)\right) & =0 \\
n=4 k+3, \frac{2}{\pi(4 k+3)} \sin \left(\frac{\pi}{2}(4 k+3)\right) & =-\frac{2}{\pi(4 k+3)}
\end{aligned}
$$

$$
x(t)=1+\sum_{k=0}^{\infty}\left[\frac{2}{\pi(4 k+1)} \cos \left(\frac{\pi}{2}(4 k+1) t\right)-\frac{2}{\pi(4 k+3)} \cos \left(\frac{\pi}{2}(4 k+3) t\right)\right]
$$

\#3

$$
\begin{aligned}
\phi_{1}(t)=1, & -2 \leq t \leq 2 \\
\phi_{2}(t)= & \begin{cases}-1 & -2 \leq t<0 \\
1, & 0 \leq t \leq 2\end{cases} \\
\phi_{3}(t)= & \begin{cases}-1 & -2 \leq t \leq-1 \\
1 & -1 \leq t \leq 1 \\
-1 & 1 \leq t \leq 2\end{cases} \\
Q_{11}\left\langle\phi_{1}, \phi_{2}\right\rangle= & \int_{-2}^{0}(1)(-1) d t+\int_{0}^{2}(1)(1) d t \\
= & -2+2=0 \\
\left\langle\phi_{1}, \phi_{3}\right\rangle= & \int_{-2}^{1}(1)(-1) d t+\int_{-1}^{1}(1)(1) d t+\int_{1}^{2}(1)(-1) d t \\
= & -1+2+(-1)=0 \\
\left\langle\phi_{2}, \phi_{3}\right\rangle= & \int_{-2}^{-1}(-1)(-1) d t+\int_{-1}^{0}(-1)(1) d t \\
& +\int_{0}^{1}(1)(-1) d t+\int_{1}^{2}(1)(-1) d t \\
= & 1-1+1-1=0
\end{aligned}
$$

So $\phi_{1}, \phi_{2}, \phi_{3}$ ene orttagoual
$b_{\text {(I }} x(t)=\left\{\begin{array}{rr}0 & -2 \leq t<0 \\ 1 & 0 \leq t<1 \\ 0 & 1 \leq t \leq 2\end{array}\right.$
best approx. of $x(t)$ as alinear coub. of $\left.\phi_{i}-1\right)$ is with the Fevier coefficients

$$
\begin{aligned}
& x(t)= k_{1} \phi_{1}(t)+k_{2} \phi_{2}(t)+k_{3} \phi_{3}(t) \\
& k_{1}=\frac{\left\langle x(t), \phi_{1}(t)\right\rangle}{\left\langle\phi_{1}(t), \phi_{1}(t)\right\rangle} \\
&\left\langle x(t), \phi_{1}(t)\right\rangle=\int_{0}^{1}(1)(1) d t=1 \\
&\left\langle\phi_{1}(t), \phi_{1}(t)\right\rangle=\int_{-2}^{2}(1)(1) d t=4 \\
& \Rightarrow k_{1}=\frac{1}{4} \\
& k_{2}=\frac{\left\langle x(t), \phi_{2}(t)\right\rangle}{\left\langle\phi_{2}(t), \phi_{2}(t)\right\rangle} \\
&\left\langle x(t), \phi_{2}(t)\right\rangle=\int_{0}^{1}(1)(1) d t=1 \\
&\left\langle\phi_{2}(t), \phi_{2}(t)\right\rangle\left.=\int_{-2}^{0}(-1)(-1) d t+\int_{0}^{2}(1)(1)_{d}\right)=2+2 \\
& \Rightarrow k_{2}=\frac{1}{4}=4
\end{aligned}
$$

$$
\left.\begin{array}{rl}
k_{3}=\frac{\left\langle x(t), \phi_{3}(t)\right\rangle}{\left\langle\phi_{3}(t), \phi_{3}(t)\right\rangle} \\
\left\langle x(t), \phi_{3}(t)\right\rangle & =\int_{0}^{1}(1)(1) d t=1 \\
\left\langle\phi_{3}(t), \phi_{3}(t)\right\rangle & =\int_{-2}^{-1}(-1)(-1) d t+\int_{-1}^{1}(1)(1) d t+\int_{1}^{2}(-1)(-1) d t \\
=1+2+1=4
\end{array}\right] \begin{aligned}
& x(t) \approx \frac{1}{4}\left(\phi_{1}(t)+\phi_{2}(t)+\phi_{3}(t)\right) \\
& \Rightarrow k_{3}=\frac{1}{4} \\
& \approx \begin{cases}\frac{1}{4}(1+(-1)+(-1))=-\frac{1}{4}, & -2 \leqslant t<-1 \\
\frac{1}{4}(1+(-1)+1)=\frac{1}{4}, & -1 \leq t<0 \\
\frac{1}{4}(1+1+1)=\frac{3}{4}, & 0 \leqslant t<1 \\
\frac{1}{4}(1+1+(-1))=\frac{1}{4}, & 1 \leq t \leq 2\end{cases}
\end{aligned}
$$

\#4

$$
\begin{aligned}
& u(t)= \begin{cases}1, & -2 \leq t<0 \\
0, & \text { elsewher }\end{cases} \\
& x(t)= \begin{cases}1, & 0 \leq t<1 \\
0, & \text { elsewher }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& (h * x)_{(t)}=0 \\
& t \leq-2
\end{aligned}
$$

$$
\begin{aligned}
& (h * x)(t)=\int_{-2}^{t}(1)(1) d t=t+2 \\
& t-1 \leq-2 \leq t \\
& -1 \leq-2-t \leq 0 \\
& 1 \leq-t \leq 2 \\
& -2 \leq t \leq-1 \\
& (h * x)(t)=\int_{t-1}^{t}(1)(1) d r \\
& \\
& =t-(t-1)=1 \\
& t-1 \geqslant-2, t \geqslant-1
\end{aligned}
$$

$$
\begin{aligned}
& t \leq 0 \\
& \frac{1 \leq t \leq 0}{} \\
& (h * x)(t)=\int_{t-1}(1)(1) d t=-t+ \\
& t-1 \leq 0 \leq t \\
& -1 \leq-t \leq 0 \\
& 0 \leq t \leq 1
\end{aligned}
$$

