Copyright © 1998 by Levent Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the written permission of the copyright holder(s).

1. Determine the complex-exponential fourier series of $x(t)$ for $0 \leq t \leq 1$, where

$$
x(t)=t \text { for } 0 \leq t \leq 1 .
$$

Hint: $\int^{t} \tau e^{\alpha \tau} \mathrm{d} \tau=(\alpha t-1) e^{\alpha t} / \alpha^{2}$.
2. Determine the fourier transform of the function x, where

$$
x(t)=e^{-a|t|} \text { for }-\infty<t<\infty
$$

and $a>0$.
3. In the following block diagram, the laplace transform of the output, under zero initial-condition, is

$$
\mathcal{L}[y](s)=Y(s)=\left(\frac{2}{s+5}\right)\left(\frac{6 s}{s^{2}+9}+\frac{1}{s+1}\right),
$$

when the reference input is $r(t)=2 e^{-t} \mathbb{1}(t)$. Determine the signal $d(t)$ for $t \geq 0$. Hint: First obtain $Y(s)$ in terms of $\mathcal{L}[d](s)=D(s)$ and $\mathcal{L}[r](s)=R(s)$, then solve for $D(s)$.

4. Find the inverse laplace transform of the following function.

$$
\begin{equation*}
F(s)=\frac{2 s^{2}+5 s+39}{(s+1)\left(s^{2}+2 s+10\right)} \tag{25pts}
\end{equation*}
$$

Solutions

Copyright (c) 1998 by Levent Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the written permission of the copyright holder(s).

1. Determine the complex-exponential fourier series of $x(t)$ for $0 \leq t \leq 1$, where

$$
x(t)=t \text { for } 0 \leq t \leq 1 .
$$

Hint: $\int^{t} \tau e^{\alpha \tau} \mathrm{d} \tau=(\alpha t-1) e^{\alpha t} / \alpha^{2}$.

Solution: The complex-exponential fourier series of x is in the form of an infinite sum, such that

$$
x(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega t}
$$

where

$$
c_{n}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j n \omega t} \mathrm{~d} t
$$

In our case $T=1$ and $\omega=2 \pi / T=2 \pi$, so

$$
\begin{aligned}
c_{n} & =\int_{0}^{1} x(t) e^{-j 2 \pi n t} \mathrm{~d} t=\int_{0}^{1} t e^{-j 2 \pi n t} \mathrm{~d} t=\left(\frac{-j 2 \pi n t-1}{(-j 2 \pi n)^{2}} e^{-j 2 \pi n t}\right)_{t=0}^{t=1} \\
& =\left(\frac{-j 2 \pi n-1}{-(2 \pi n)^{2}} e^{-j 2 \pi n}\right)-\left(\frac{-1}{-(2 \pi n)^{2}}\right) \text { for } n \neq 0 .
\end{aligned}
$$

Since $e^{-j 2 \pi n}=1$ for all integer n,

$$
c_{n}=\frac{1}{(2 \pi n)^{2}}(j 2 \pi n+1-1)=j\left(\frac{1}{2 \pi n}\right) \text { for } n \neq 0 . .
$$

For $n=0$, we get

$$
c_{0}=\int_{0}^{1} x(t) \mathrm{d} t=\int_{0}^{1} t \mathrm{~d} t=\left(\frac{t^{2}}{2}\right)_{t=0}^{t=1}=\frac{1}{2} .
$$

Therefore,

$$
x(t)=\frac{1}{2}+\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} j\left(\frac{1}{2 \pi n}\right) e^{j 2 \pi n t} \text { for } 0 \leq t \leq 1 .
$$

2. Determine the fourier transform of the function x, where

$$
x(t)=e^{-a|t|} \text { for }-\infty<t<\infty
$$

and $a>0$.

Solution: The fourier transform of x is

$$
\begin{aligned}
\mathcal{F}[x](\omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} \mathrm{~d} t=\int_{-\infty}^{\infty} e^{-a|t|} e^{-j \omega t} \mathrm{~d} t=\int_{-\infty}^{0} e^{a t} e^{-j \omega t} \mathrm{~d} t+\int_{0}^{\infty} e^{-a t} e^{-j \omega t} \mathrm{~d} t \\
& =\left(\frac{e^{(a-j \omega) t}}{(a-j \omega)}\right)_{t=-\infty}^{t=0}+\left(\frac{e^{-(a+j \omega) t}}{-(a+j \omega)}\right)_{t=0}^{t=\infty}=\left(\frac{1}{(a-j \omega)}-0\right)+\left(0-\frac{1}{-(a+j \omega)}\right) \\
& =\frac{1}{(a-j \omega)}+\frac{1}{(a+j \omega)},
\end{aligned}
$$

or

$$
\mathcal{F}[x](\omega)=\frac{2 a}{a^{2}+\omega^{2}}
$$

3. In the following block diagram, the laplace transform of the output, under zero initial-condition, is

$$
\mathcal{L}[y](s)=Y(s)=\left(\frac{2}{s+5}\right)\left(\frac{6 s}{s^{2}+9}+\frac{1}{s+1}\right)
$$

when the reference input is $r(t)=2 e^{-t} \mathbb{1}(t)$. Determine the signal $d(t)$ for $t \geq 0$. Hint: First obtain $Y(s)$ in terms of $\mathcal{L}[d](s)=D(s)$ and $\mathcal{L}[r](s)=R(s)$, then solve for $D(s)$.

Solution: From the block diagram, we get

$$
Y(s)=D(s)+V(s)=D(s)+\left(\frac{1}{s}\right) E(s)=D(s)+\left(\frac{1}{s}\right)(R(s)-5 Y(s))
$$

or

$$
D(s)=Y(s)+\left(\frac{5}{s}\right) Y(s)-\left(\frac{1}{s}\right) R(s)=\left(\frac{s+5}{s}\right) Y(s)-\left(\frac{1}{s}\right) R(s)
$$

Since,

$$
Y(s)=\left(\frac{2}{s+5}\right)\left(\frac{6 s}{s^{2}+9}+\frac{1}{s+1}\right)
$$

and

$$
r(t)=2 e^{-t} \mathbb{1}(t) \longleftrightarrow 2 \frac{1}{s+1}=R(s)
$$

we have

$$
\begin{aligned}
D(s) & =\left(\frac{s+5}{s}\right) Y(s)-\left(\frac{1}{s}\right) R(s) \\
& =\left(\frac{s+5}{s}\right)\left(\frac{2}{s+5}\right)\left(\frac{6 s}{s^{2}+9}+\frac{1}{s+1}\right)-\left(\frac{1}{s}\right)\left(\frac{2}{s+1}\right) \\
& =\frac{12}{s^{2}+9}+\frac{2}{s(s+1)}-\frac{2}{s(s+1)}=\frac{12}{s^{2}+9}=4 \frac{3}{s^{2}+3^{2}} .
\end{aligned}
$$

Therefore,

$$
d(t)=4 \sin (3 t) \mathbb{1}(t) .
$$

4. Find the inverse laplace transform of the following function.

$$
F(s)=\frac{2 s^{2}+5 s+39}{(s+1)\left(s^{2}+2 s+10\right)}
$$

Solution: We first write the partial fraction expansion of $F(s)$.

$$
F(s)=\frac{2 s^{2}+5 s+39}{(s+1)\left(s^{2}+2 s+10\right)}=\frac{\alpha}{s+1}+\frac{\beta_{1} s+\beta_{2}}{s^{2}+2 s+10}
$$

Here,

$$
\alpha=\lim _{s \rightarrow-1}[(s+1) F(s)]=\left[\frac{2 s^{2}+5 s+39}{s^{2}+2 s+10}\right]_{s=-1}=\frac{36}{9}=4 .
$$

Then,

$$
F(s)=\frac{4}{s+1}+\frac{\beta_{1} s+\beta_{2}}{s^{2}+2 s+10}
$$

To find β_{1} and β_{2}, first we let $s=0$ in the above equation, i.e.,

$$
\frac{39}{(1)(10)}=\frac{4}{1}+\frac{\beta_{2}}{10} .
$$

As a result, $\beta_{2}=-1$, and

$$
F(s)=\frac{4}{s+1}+\frac{\beta_{1} s-1}{s^{2}+2 s+10}
$$

Next, we let $s=1$, i.e.,

$$
\frac{2(1)^{2}+5(1)+39}{(1+1)\left((1)^{2}+2(1)+10\right)}=\frac{4}{(1)+1}+\frac{\beta_{1}(1)-1}{(1)^{2}+2(1)+10}
$$

and we obtain $\beta_{1}=-2$. So,

$$
F(s)=\frac{4}{s+1}+\frac{-2 s-1}{s^{2}+2 s+10} .
$$

We know that

$$
\begin{aligned}
e^{-\alpha t} \mathbb{1}(t) & \longleftrightarrow \frac{1}{s+\alpha}, \\
\sin (\omega t) \mathbb{1}(t) & \longleftrightarrow \frac{\omega}{s^{2}+\omega^{2}}, \\
\cos (\omega t) \mathbb{1}(t) & \longleftrightarrow \frac{s}{s^{2}+\omega^{2}},
\end{aligned}
$$

and

$$
e^{-\alpha t} f(t) \longleftrightarrow F(s+\alpha)
$$

Therefore, we complete the second-order denominator to squares, and arrange the terms to fit into the sinusoidal function transforms.

$$
\begin{aligned}
F(s) & =\frac{4}{s+1}+\frac{-2 s-1}{s^{2}+2 s+10}=\frac{4}{s+1}+\frac{-2 s-1}{\left(s^{2}+2 s+1\right)-1+10}=\frac{4}{s+1}+\frac{-2 s-1}{(s+1)^{2}+9} \\
& =\frac{4}{s+1}+\frac{-2(s+1)-(-2)(1)-1}{(s+1)^{2}+3^{2}}=\frac{4}{s+1}+\frac{-2(s+1)+1}{(s+1)^{2}+3^{2}} \\
& =(4) \frac{1}{s+1}-(2) \frac{(s+1)}{(s+1)^{2}+3^{2}}+(1 / 3) \frac{3}{(s+1)^{2}+3^{2}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathcal{L}^{-1}[F](t) & =\left(4 e^{-t}-2 e^{-t} \cos (3 t)+(1 / 3) e^{-t} \sin (3 t)\right) \mathbb{1}(t), \\
& =4 e^{-t}-2 e^{-t} \cos (3 t)+(1 / 3) e^{-t} \sin (3 t) \text { for } t \geq 0 .
\end{aligned}
$$

