Copyright © 1998 by Levent Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the written permission of the copyright holder(s).

1. Sketch the asymptotes for the gain versus frequency plot for a system with the transfer function

$$
\begin{equation*}
G(s)=\frac{(s+100)^{2}}{s(s+1)} \tag{15pts}
\end{equation*}
$$

2. Determine the cut-off frequency or frequencies of a system with the transfer function

$$
G(s)=\frac{10(s+1)}{(s+10)(s+500)}
$$

3. The frequency response of a minimum-phase, stable control system has been obtained experimentally, and the following asymptotes have been fitted.

(a) Determine the transfer function from the asymptotes.
(b) Sketch approximate phase versus frequency plot of the control system.

Make intelligent use of the figure on the right which shows the magnitude and phase versus frequency plots of

$$
\frac{1}{\left(j\left(\omega / \omega_{n}\right)\right)^{2}+2 \zeta\left(j\left(\omega / \omega_{n}\right)\right)+1}
$$

for different values of ζ.

4. The phase of a certain minimal-phase, stable feedback control system has been obtained experimentally, and the following asymptotes were obtained.

(a) Determine the transfer function from the asymptotes as much as possible, and leave the indeterminable quantities in parametric form.
(20pts)
(b) Sketch approximate gain versus frequency plot assuming "reasonable" values for the missing quantities. Show your assumptions clearly.

in this case the ut-off frequmier or at

$$
\omega=10 \text { and } \omega=500 \text {. }
$$

means there is ec double pole or, complex pair at $w_{n}=4$
means there is a peak with 4.85 .is value, from the graph this corresponds to $\xi \approx 0.3$

Thefere, thee e \bar{v} a complex pair at $u_{n}=4$ with $\xi=0.3$ or

$$
\frac{1}{\left(\frac{5}{4}\right)^{2}+2 \times 0.3 \times(\mathrm{s} / 4)+1}
$$

So $G(s)=K \frac{s / 0.1+1}{s\left((s / 4)^{2}+0.6(s / 4)+1\right)}$

To determine K, we can use the magnitude at any fregconcy. However, the sketch, we hone is only the asymptotes. So we either imorponate the differsave between the caspuptoter and the neal plot, or pick a point whee Au asyuptoter are almost the same as the real plot.
at $w=0.1 \quad /\left.G(s)\right|_{d \beta}=(34+3) d B=37 d B$

$$
\text { or }|G(s)|=10^{s=0.1} 120=70.8
$$

$$
\begin{aligned}
& \left|K \frac{j 0.1 \% .1+1}{j 0.1\left((j 0.1 / 4)^{2}+0.6(j 0.1 / 4)+1\right)}\right|=0.8 \\
\Rightarrow & K \approx 5
\end{aligned}
$$

or $\quad G(s)=5 \frac{s / 0.1+1}{\left.s\left(c^{s / 4}\right)^{2}+0.6(s / 4)+1\right)}$

$$
=800 \frac{s+0.1}{s\left(s^{2}+2.4 s+16\right)}
$$

