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1. A discrete-time control system is described by 

where U1 = ~ [ u l  1, U2 = Z [ U ~  1, and Y = Z[ y ]  are the two input and the one output vmiables, 
respectively. Obtain a state-space representation of the system with minima.1 number of state variables. 

(20pts) 

2. A continuous-time control system is described by 

where u, x, and y are the input, the state, and the output variables, respectively. Determine its discrete- 
time state-space representation, when T = 0.5 s. (25pts) 

3. A discrete-time 1inea.r control system is described by 

where u, x, and y are the input, the state, and the output variables, respectively. 

(a) Determine the transfer function Y(z)/U(z) of the system, where U = Z[ u ] a.nd Y = Z[ y ] (10pts) 

(b) Design a full state-feedback controller, such that the closed-system system poles are 1oca.ted at 
z = 0.3 f j0.2. (15~ t s )  

(c) Implement the controller of the previous part by assuming that only the output is available. (15pts) 

(d) The output is observed to be y(k) = 2(-0.8)"or k > 0, when u(k) = 0. Obtain all the instances of 
the state variable x(k) that can be determined. (15pts) 
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1. A discrete-time control system is described by 

where U1 = Z[ u1 1 ,  U2 = Z[ u.2 1 ,  and Y = Z[ y ] are the two input a,nd the one output variables, 
respectively. Obtain a state-space representation of the system with minimal number of state variables. 

Solution: Rorn the transfer matrix, we observe that there is only one output to the system. As a result, 
we may be able to factor out the common denominator and realize the denominator polynomial in 
the observer realization form, and the two numerator polynomials can be generated independently 
as the feedforward terms. 

(a) The feedback portion. (b) Observer realization form 

When the two elements in the numerator matrix are generated as the feedforward terms, we get 

U l  

Next, we assign the state variables as shown in the figure and obtain 

x1(k + 1) = x2(k) + 0.2y(k) + ul(k), 

x2(k + I) = -0.05y(k) - 0.3ul(k) - O.O1~2(k), 



Exam#2 Solutions Spring 2008 2/7 

and 

We need to substitute the y expression into the state equations to obtain a. state-space representation. 

x l ( k  + 1) = xa(k) + 0.2(x l (k)  + ~ ( k ) )  + u l ( k )  

= 0.2x1(k) + x 2 ( k )  + u l ( k )  + 0.2uz(k), 

x2 (k  + 1) = -0.05 ( x l ( k )  + u2(k ) )  - 0 . 3 ~ 1  ( k )  - 0-01'W(k) 

= -0.05x1(k) - 0 . 3 ~ 1  ( k )  - 0 .06~2  ( k ) ,  

and 

After expressing the above equations in matrix form, we get the state-space representation 

2. A continuous-time control system is described by 

where u, x ,  and y are the input, the state, and the output variables, respectively. Determine its discrete- 
time state-space representation, when T = 0.5 s. 

Solution: The representation of a continuous-time state-representation described by 

is given by 

~ ( k )  = Cx(k)  + ww, 
where the state transition matrix 

@(t, t o )  = eA(t-to) = [ ( s I  - A)-' ] ( t  - to) .  
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In our case, 

@(t, 0) = L,' [ (sI - A)-' ] ( t )  = Lyl [ [ ; ~ l 3 ] - ~ ] ( ~ )  

Also, 

As a result, 

@(t, 0) Bdt 0.0774 

Therefore, the discrete-time state-space representation of the continuous-time system is 
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3. A discrete-time linear control system is described by 

y(k) = [ 0.6 1 ] x(k), 

where u, x ,  and y are the input, the state, and the output vasiables, respectively. 

(a) Determine the transfer function Y(z)/U(z) of the system, where U = Z[ u ] and Y = Z[ y ] 

Solution: The transfer matrix or the transfer function in the case of a single-input single-output 
control system described in the state-state representation 

is 

where 

C =  [ 0 . 6  1 1 ,  D = 0 ,  

and I is the appropriately dimensioned identity matrix. So, 

Therefore, the transfer function is 
1 

F ( s )  = --- 
z + 0.8' 

(b) Design a full state-feedback controller, such that the closed-system system poles are located at  
z = 0.3 f j0.2. 
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Solution: The characteristic polynomial q, under state-feedback gain K = [ kl k2 1 ,  such tha.t 
the input u = K x ,  can be determined from 

q c ( ~ )  = det (ZI - ( A  + B K ) )  

Z 
= det 

-0.48 - k1 z + 1.4 -I - k2 1 
Considering that the desired closed-loop system poles are a t  z = 0.3 f j0.2, the closed-loop 
desired characteristic polynomial is 

Setting qc(z) = qc,(z), we get 
-kz + 1.4 = -0.6, 

and 
-kl + 0.48 = 0.13, 

Therefore the state-feedback control is 

for k 2 0. 

(c) Implement the controller of the previous part by assuming that only the output is available. 

Solution: When only the output is available, state-feedback control can still be implemented if an 
observer is used. Moreover, we know that if a system is observable, we can place the closed-loop 
poles of the observer a t  any desired location via error-feedback control. However, in this case, 
the system is reachable, and one of the original system poles cancel out in the transfer function. 
Therefore, the system cannot be observable, and we won't be able to  place both of the observer 
poles a t  any desired location. From the value of the canceled pole, we may also conclude that 
the pole a t  z = -0.6 cannot be moved in an observer design. Under these restrictions and for 
u(k) = Kx(k)  + v(k), the desired observer-characteristic polynomial ca,n only be 

qod (z) = (z + 0.6)(z - a ) ;  

where -1 < a < 1. So assuming that 
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for some observer-error gain matrix L, where jj is the observer output variable; and letting 
cr = 0.1, the desired observer-characteristic polynomial becomes 

The observer-characteristic polynomial go under the error feedback can be determined from the 
denominator of the transfer function of the observer, such that 

qo(z) = det (z I - (A + LC)) 

Setting q0(z) = go, (z),  we get 
-0.611 - i2 + 1.4 = 0.5, 

and 
-0.3611 - 0.612 + 0.48 = -0.06. 

Obviously, the two equations are the same, and we get infinitely many solutions with one equa- 
tion. Letting l1 = a in 

-0.611 - 12 = -0.9, 

we get 

for any a,  where e and jj are the error feedba.cl< and the observer output variables, respectively. 

(d) The output is observed to be y(k) = 2(-0.8)~ for k 2 0, when u(k) = 0. Obtain a,ll the instances of 
the state variable x(k) that can be determined. 

Solution: In order to observe the initial conditions from the future values of the output, the 
system needs to be observable. The observability property can be checked by the rank of the 
observability matrix 

In our case, the observability matrix is 

and rank (O(C, A)) = 1 < 2. 
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As a result, we know that x(0) cannot be determined from y(k) for k > 0. We also know 
that we can't determine x(-1) for 1 > 0 as well; since determining x(-1) implies determining 
x(0) = A1x(-1). Similarly, because of the invertibility of the state matrix A, we can't determine 
z(k) for k > 0; since determining z(k) implies determining x(0) = A-'x(k). 

Therefore, there is no instance of the state variable that can be determined from the output. 


