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1. Consider the matrix

Determine sin(4) and cos(A). (20pts)
2. A control system is described by
s+1
s24+s5+1
2s
2+s+1

Yi(s)
Ya(s)

where U = [ [ u] and Y = ¢ [y] = [ 1 Y5 ]T are the input and the output variables, respectively.
Obtain a state-space representation of the system with no more than two state variables. (25pts)

3. A control system is described by

-1 1 0 1
x(t) = 0 -1 0 (x(®)+|o0 u(t),
0 -2 1

y(t):[l 0 O]X(t),

where u, x, and y are the input, the state, and the output variables, respectively. Determine x(t) for
¢t > 0: when x(0) = [ 001 ]T, and u(t) is the unit step function. (30pts)

4. The dynamical equations of a nonlinear control system are given by
T1(t) = =221 (t) + z22(¢),
Za(t) = 22°(t) — za(2),
where z; and z5 are the state variables.

(a) Determine all the equilibrium states of the system. (05pts)

(b) Check the local stability of the system using Lyapunov’s first method for all the equilibrium states.
(20pts)
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Solutions

I. Consider the matrix

Determine sin(A) and cos(A).

Solution: Any function, that has a non-trivial taylor serjes expansion, of an nth order matrix can be
determined either by its taylor series expansion, where

=31 [%“’LO n

n—1
f(A) =) oA
i=0

for some scalars @i, 1=0,...,n~1. The scalars are determined by the application of the eigenvectors
to the above equation that results in the set of equations

F1) = a0+ arh + ... + ap_y A1

f(An) = ap + atA, + ...+ O AR
where Ay, ... A\, are the eigenvalues. In our case, n = 2; so
f(A) = apl + a; A;

and since the matrix A4 is in upper-diagonal form, the eigenvalues are easily observed from the
diagonal, such that Al =X =0 =)\ However, when an eigenvalue is repeated, we get the same
equation more than once. In such a case, we use the derivatives of the equations for the repeated
eigenvalue with respect to the eigenvalue, or

dx ~
d/\k (f(/\l) :a0+al/\j+...+an_1/\? 1)
H

for k=1,.. ., r, where r is the number of repetitions of the eigenvalue )\;. In our case, the set of

equations becomes -
f(/\) = o + al’\7

and
df(A)/dX = q;.

For f =sin, and \ = 0; we get
sin(0) = a9 + (0),

1
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and

cos(0) = ;.

Solving the above set of equations simultaneously gives ap = 0 and a1 = 1. As a result, we get

sin(A) = A.
For f = cos; we get

cos(0) = ag + a; (0),
and

—sin(0) = a;.

Similarly, solving the above set of equations gives ag = 1 and a; = 0. So, we get

cos(A) = 1.

2. A control system is described by

s+1
Yi(s) T
+s+1
=177 v,
s
Ya(s) s2+s+1
whereU=£[u] andY=£[y]=[Y1 Y,

JT are the input and the output variables, respectively.
Obtain a state-space representation of t

he system with no more than two state variables.

Solution: From the transfer matrix, we observe that there is only one input to the system. As a result
we may be able to factor out the common denominator and realize the system such that

Yo = [ fo | =[5 e ] Mo

realization form.

1
24541

(a) The feedback portion.

(b) Controller realization form.

When the two elements in the numerator matrix are generated as the feedforward terms, we get
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Next, we assign the state variables as shown in the figure and obtain

T = o,

Ty = —x33 -T2 + u,
and

Y1 =11 + 9,

Y2 = 2z;.

After expressing the above equations in matrix form, we get the state-space representation
B0 =[0 [E8 ]+ [ ]we
FIR I RO
3. A control system is described by

-1 1 o0 1
Xt)=| 0 -1 0 |xt)+ [OJu(t),
0 0 -2 1

v )=[1 0 0]x(),

where u, x, and y are the input, the state, and the output variables, respectively. Determine x(t) for
t > 0; when x(0) = [0 0 1 ]T, and u(t) is the unit step function.

Solution: The solution to a control system described i)y |
x(t) = Ax(t) + Bu(t)
is given by

¢
x(t) = eAtx(O) +/ eA(t_T)Bu(T) dr
0
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for t > 0. To determine e, we may use a few different methods. However, in our case the matrix
A is in jordan form, and e“t may be written directly, where

et temt 0

Therefore, the state-variable is given by

[e7t te7t 0 0 ¢ [ et (¢t —7)e=(t-7) 0 1
xt)=| 0 et 0 0|+ / 0 e (t=7) 0 0 | (1)dr
| 0 0 e 1 0 0 0 e 2t=7) 1
[ 0 ] ¢ [ e (t=7) 0 e~ (t=7) T=t
| 2t | 0 | g—2(t-7) e—2t (1/2)e~2(t=7) =0
[0 ] 1-et
= 0 + 0 ,
[ e (1/2)(1 - e7%)
or
1-e7t
x(t) = 0 for t > 0.
(1+e2)/2

4. The dynamical equations of a nonlinear control system are given by
T1(t) = —2z1(t) + 29%(t),
2(t) = 23 (t) — z2(2),
where z; and z, are the state variables.
(a) Determine all the equilibrium states of the system.
Solution: Equilibrium states of the system x, = [mle T2, ]T are the states that would make
Xe = 0. Setting £, = £5 = 0 in the system equations, we get
=221, + T2, =0,
TS — T2, = 0.
From the second equation, we get
22¢° — Tae = Tae(72.2 — 1) =0,

or r2, = 0 or zo,+1. For x5, = 0, we get z1, = 0 from the first equation; and for zo, = +1, we get
T1e = 1/2. Therefore, the equilibrium states are [0 0 ]T, [(1/2) 1 ]T, and [ (1/2) -1 ]T.

(b) Check the local stability of the system using Lyapunov’s first method for all the equilibrium states.
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Solution: Lyapunov’s first stability theorem checks the stability of the linearized system about the
equilibrium states to decide on the local stability. For a nonlinear system described by

I fi(z1,. .., z0)
:bn fn(xl,...,mn)
the linearized system is given by
.’i.:‘l 8f1(x1,...,zn)/8m1 c')fl(xl,...,mn)/axn i‘]_
Zn Ofn(z1,...,2,) /021 - Ofn(z1,...,2,)/0Tn . L Tn
In our case, fi(z1,z2) = —221 + 252, and fa(z1,72) = 293 — z5. The linearized system is given

by

[ 2,;‘1 J _ [ 8f1(x1,x2)/8z1 Bfl(xl,xg)/axz :l ,:571 } _ [ -2 2:1:2 ] [ .’i‘l }
r Ofa(1,22)/0m1 Of2(21,22)/022 |aymsy, [ F2 ] | 0 32221 |0, '

12=12¢ 22=I2e

The [0 0 ]T equilibrium state case: In this case, the linearized system becomes

#]_[-2 0][&

) - 0 -1 Ig |
Since the state-transition matrix is diagonal, we observe that the eigenvalues are —1 and —2.
From Lyapunov’s first stability theorem, if all the eigenvalues of the linearized system have

negative real parts, then the equilibrium state is locally, asymptotically stable. Therefore,
the equilibrium state [ 00 ]T is locally, asymptotically stable.

The [ (1/2) 1 ]T equilibrium state case: In this case, the linearized system becomes

] _[-2 2%
To | 0 2 Ty |-
Since the state-transition matrix is upper-diagonal, we observe that the eigenvalues are —1

and 2. From Lyapunov’s first stability theorem, if at least one of the eigenvalues of the
linearized system has a positive real part, then the equilibrium state is locally unstable.

Therefore, the equilibrium state [ (1/2) 1 ]T is locally unstable.
The [ (1/2) -1 ]T equilibrium state case: In this case, the linearized system becomes
] [ -2 -2 z;
I ] | 0 2]|E: ]

Since the state-transition matrix is also upper-diagonal, we obse;ve that the eigenvalues are
again —1 and 2. Therefore, the equilibrium state [(1/2) —1]" is locally unstable.




