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1. Consider the matrix

01
23]
Determine sin(A) and cos(A). Simplify the expressions as much as possible. (25pts)
HINT: Euler’s identities,
el® — g7Ic el* eI

and cos(a) =

sm(a) = T— _2__7

as well as the hyperbolic function definitions,

e* —e ™ e +e™

sinh(a) = 5 and cosh(a) = —

may be used to simplify the final expressions.

2. The block diagram of a control system is given below.

u s s+1 y
% s+1 s

(a) Obtain a state-space representation of the system without any block-diagram reduction. (15pts)

(b) Determine the transfer function of the system from its state-space representation. (10pts)

3. A time-varying linear control system is described by

(1) —6+5e7t 3—3et 0 0 0
T(t) = x(t) + u(t),
—10 + 10e=t 5 —6e? 1

where u and z are the input and the state variables, respectively. Determine z(t) for t > 0. when
20 =[1 —1]" and u(t) =0 for t > 0. (30pts)



4. A control system is described in state-space representation, such that
z(t) = Az(t) + Bu(t),
y(t) = Cz(t) + Duf(t),

where u, x, and y are the input, the state, and the output variables, respectively. For the following
A, B. C, and D matrices, determine whether the system is asymptotically stable, marginally stable, or
unstable; and whether it is bounded-input-bounded-output stable or not. Justify your answer.

(a)

0 0 0 0
A=|l0 o0 o, B=]|1], C:[S?H,amdD:o.
0 0 -1 0
(10pts)
(b)
0 1 0 1 )
A=|0 0 0|, B=]o0], (J:[1 0} and D =0
0 0 -1 1
(10pts)
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1. Consider the matrix
01
23]
Determine sin(A4) and cos(A4). Simplify the expressions as much as possible.

HiNT: Euler’s identities,

el — eI e’ +e7I®
and cos(a) = ———

sm(a) = T B

)

as well as the hyperbolic function definitions,

e —e ™ ea+e-a

sinh(a) = and cosh(a) = —

may be used to simplify the final expressions.

Solution: Any function, that has a non-trivial taylor series expansion, of an nth order matrix can be
determined either by its taylor series expansion, where

oo

1 [d'f )

1=0

by the use of the Cayley-Hamilton’s theorem, where
n-1 .
FlA) =) oAl

i=0

for some scalars a4, i =0, ..., n— 1; or by diagonalization, where
f(A)=TfTAT)T!

for a transformation T', such that T-'AT is in jordan form and the evaluation of f (T YAT) is
directly performed.

In the use of the Cayley-Hamilton’s theorem, the scalars are determined by the application of the
eigenvectors to the above equation that results in the set of equations

f(/\l) =ap+ oA +...+ an_lz\?_l

where A1, ..., A, are the eigenvalues, and they are determined from

det(AI — A) = 0.
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In our case, n = 2; so
f(A) = apl + a1 4;

and the eigenvalues are determined from

10 01 _ A =11 s _
det(A[O 1}—[1 OJ)—det[l /\J—/\ +1=0.

or A\;2 = %j. For f = sin, the set of equations becomes

sin(j) = ag + a1(j),
sin(—j) = ag + ai(—j).

Observing that sin(—6) = —sin(f) and solving the above set of equations simultaneously, we get
Qo = 0,
and (s ~1 _ o+1y /9. +1 _ -1
ap = Sm,(]) = (e —é /2] =L ¢ = sinh(1).
J J 2
As a result,
. . . 01 0 1.1752
sin(A) = sinh(1)A = sinh(1) [ 1 0 } ~ [ _1.1752 0 ]

For f = cos: we get

cos(j) = ap + a1(j).
cos(—j) = ag + a1 (—7).

This time cos(—0) = cos(#), and we get

(e—-l + 6+1)

5 = cosh(1),

ag = cos(j) =
and
ay] = 0.

Similarly,
cos(A) = cosh(1)I = cosh(1) [ (1) (1) ] ~ [ 1‘5(;131 15(4)131 } ’

2. The block diagram of a control system is given below.

u
@ s s+1 Y

'\f s+1 ]

(a) Obtain a state-space representation of the system without any block-diagram reduction.
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Solution: In order to obtain a state-space representation without any block-diagram reduction or
without determining the closed-loop transfer function, we need to realize the individual blocks
and use the complete block diagram to generate the state-space equations.

S

s+1
(a) The first feedforward gain (b) Controller realization form.
block.
s+1
s
(a) The second feedforward (b) Controller realization form.
gain block.

The connected and “expanded” block diagram is shown below.

After assigning the state variables as shown in the figure, we obtain
T1 = Zg,
Ty = —z2+ (u —y),
and
y=zx1+ I =x; + Io.
Substituting the output equation to the second state-variable equation, we get

To=—Iog+u—2x — I9
209 = —x1— 29+ u
&g = —(1/2)x1 — (1/2)z2 + (1/2)u



EE 431 Exam#1 Solutions Fall 2005 4/12
Substituting for the z, terms, we obtain the state-space representation
i?l(t) _ —'1/2 —1/2 .’Bl(t) 1/2
’:i‘g(t) J - [ -1/2 -1/2 z9(t) + 1/2 u(t),

yt)=[1/2 -1/2] [ 28 J + [ 1/2 Ju(t).

If we use the observer realization form for each of the blocks, then we obtain a different state-
space representation.

I —
0 1
1 x
: |
-1
s I
| s+ 1
(a) The first feedforward gain (b) Observer realization form.
block.
I ]
1 1
1 x
* .
o
s+ 1
; T
(a) The second feedforward (b) Observer realization form.
gain block.

The connected and “expanded” block diagram for this case is shown below.
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Similarly, we obtain

a'c1=z2+(u—y),

ty = —(z2+ (u—y)),
and
y=z1+ (z2+ (u —y)).
Solving for the output variable in the last equation, we get

y=r1+z2tu-—y
2y=x1+x20+1u
y=(1/2)z1 + (1/2)z2 + (1/2)u

And,
a0 ]-[e n][me )] 2w,

ym:[uzuzﬂi£”+[uﬂum.

(b) Determine the transfer function of the system from its state-space representation.

Solution: The transfer function of a control system described in the state-state representation
z(t) = Az(t) + Bu(t),
y(t) = Cx(t) + Du(t),

is

F(s)=C(sI — A)~'B+ D;

where in our case

a=[ T Tl e[
c=[12 -1/2], p=[1/2],



EE 431 Exam#1 Solutions Fall 2005

in the controller form;

=k el m=[an)
cC=[1/2 1/2], D=[1/2],

in the observer form. Here, I is the appropriately dimensioned identity matrix.

Using the controller form,
F(s)=[1/2 -1/2] (s [(1) (1) ] - [ jg jg D_l [ ig } +1/2

=[1/2 -1/2] [ Sﬁl“/12/2 31/12/2 J—l [ ig } +1/2

1 [s+1/2 —1/2 1/2
=GruprEial Y2 V2l g s+1/2H1/2J“/2

! 1/2 -1/2 ] ( igz ] +1/2

T (s+1/2)2+1/4 [

1
- (s+1/2)2+1/4[0]

+1/2.
In other words, the transfer function is F(s) = 1/2.

Using the observer form, we get the same result.
1\ -1
_ 1 0 -1/2  1/2 1/2
Fo=(zwel(s]y 1] n]) [

=[1/2 1/2][5“/2 172 }—1[ V214

-1/2  s+1/2 12
S R A | R
N (s+1/21)2+1/4 [1/2 1/2] [ _igz J f12

ey G R ESTC)

6,/12
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3. A time-varying linear control system is described by
A (1) —6+5t 3-—3et ) + 0 )
T = b u y
—10+ 10e~t 5—6e™t 1

where u and x are the input and the state variables, respectively. Determine x(t) for t > 0, when
z(0) = [ 1 -1 ]T, and u(t) =0 for t > 0.

Solution: Since the given system is time varying, the solution is given by
t
z(t) = &(¢,0)z(0) +/ ®(t, 7)B(r)u(r)dr,
0

where @ is the state-transition matrix, and B is the input matrix. When the state matrix A4 and its
integral commute, or when the commutativity condition A(t;)A(t2) = A(t2)A(t;) for all £, and ¢, is
satisfied; the state-transition matrix is given by

O(t, o) = e(f‘eo A() dr).

In our case,

[
A(t1)A(t2) =

—6+5e7t  3—3e 0 —6+5e" 2 3—3et2
| —10+10e™ 5-—6e7

—10+ 10e~2 5 — ge 2
[ 6—5e 1t _343etit2

- | 10 —- 106_t1—t2 -5+ 6e—t1—t2 ] = A(t2)A(t1)7

and the state-transition matrix is exponential of the integral of the state matrix. However, direct
computation of the exponential is rather involved and a simpler approach is preferable.

Diagonalization of A(t)
One possible approach is to diagonalize the state matrix. If there exists a matrix T such that

T IAMT = A(t)
is diagonal, then

B(t,to) = el A047) _ o (fig T AT ar) oy _ o (S A ar) .

To diagonalize the state matrix, we first need to find its eigenvalues from the characteristic

equation
det()\I - A(t)) =0,

or
A+6—5et —3+43e?

det =X+l +eY+et=A+1)(A+et) =0.
1 10-10et A—5+6et (1+e7) (1) +e)

So, the eigenvalues are A\; = —1 and Ay = —e™t.
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For A\; = —1, we have
5—-5et —3+3e! v !

—I— A = =0,

( o [10—uk4 —6+6€*}[ 2

or
(5 —5e7) v, + (=3 +3e Hv,2=0.

Letting v,? = 5, we get v, = [ 3 5 ]T.

Similarly, for Ay = —e™*, we have

(—eT— ) 6—6et —3+3et v, ! 0
—€ - Vo = =0,
27 10=10e~t —5+ 5~ 2

or
(6 —6e")vy! + (=3 + 3 )v,2 = 0.

Letting v22 = 2, we get vy = [ 1 2 ]T.
Therefore,
3 1
r-[3 2]
diagonalizes the state matrix, such that

. -1 0
T‘A(t)T:AA(t)=[ . _t].

First taking the integral of A4, we get

: T -Dar 0 I U N IO
/toAA(T) ar= [ 0 ftf)(—e"’)dT } - [ 0 e 7 } B { 0 et —eto

T=to
second taking the exponential of the integral, we get

—(t—t
e |

0 et

and finally,
®(t,0) = Tello Aatndr) -1

(3 1]1[et 0 3 117!
s 9 0 ele™-D 5 2

[ Get—Be "D _ge=t 4 3ele™ )
B 10e~t — 10ele™*-1) —5e~t + gele™*~1) :

Since z(0) =[1 -1 ]T, and u(t) = 0 for ¢t > 0; we have x(t) = ®(¢,0)x(0), or

9e~t — 8ele™*-1)
z(t) =

= ., (e=t_1) for t > 0.
15e~" — 16e

8/12
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Using the Cayley-Hamilton theorem
Another possible approach is to use the Cayley-Hamilton theorem to determine ®(t,tp) from
the eigenvalues of A(t). In this method, we observe that ®(t,to) may be described by a linear
combination of A¥(t) for k=0, ..., (n — 1), so that
t
efig AtmIar) _ ao(t) + ar(H)A(t) + ... + an_1()A™L(2),

where I is the appropriately dimensioned identity matrix, n is the dimension of the system. and
ao(t), ..., an—1(t) are functions of time. The scalars are determined by the application of the
eigenvectors to the above equation that results in the set of equations

ello M) = 0o (AT + ar ()M () + ... + an-1(H)AT7H(t)

e(fot An(7) dT) = ao(t)I + ay (t)/\n(t) + ...+ an—l(t)/\z—l(t)v

where A1(2), ..., An(t) are the eigenvalues. Since we have already determined the eigenvalues of
A(t) as A\i(t) = —1 and Ay(t) = —e™t, and n = 2; the set of equations becomes

ello=1d7) = 1) + o (t)(-1)
ello=e747) — 44(8) + an (8) (=€),
et = ap(t) — a1 (t)
ele™ =1) _ ap(t) — e_tal(t).

Solving the above set of equations simultaneously gives

ap(t) = (e_2t - e(e_t’l)) / (e"t - 1)
ai(t) = (e_t - e(e-t“l)) / (e_t - 1)

®(t,0) = ao(t)] + a;(t)A(t),

As a result,

and
z(t) = ®(t,0)x(0) = ao(t)z(0) + a1 (t)A(t)x(0)

e=2t _ gle™t=1) 1 e~t — ele™t=1) -9+ 8!
- et—1 -1 + e"t—1 —15 + 16e~t

1 [ 9e=2t — ge=t — Bele™ ~1e—t 1 gele™*-1)
- <e't - 1) 15e~2 — 15e~t — 16e(¢ " ~Ve~t 4 16ele™ -1

_ ( 1 ) [ 9e7t(e™t —1) —8ele™ D (et — 1) J

et =1/ | 15e7t(et — 1) — 16e(c™ D (et — 1)

9e~t — 8ele™'-1)
N 15e~t — 16efe™*-1 |’

which is the same result as before.
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4. A control system is described in state-space representation, such that
x(t) = Az(t) + Bu(t),
y(t) = Cz(t) + Du(t),

where u, x, and y are the input, the state, and the output variables, respectively. For the following
A, B, C, and D matrices, determine whether the system is asymptotically stable, marginally stable, or
unstable; and whether it is bounded-input-bounded-output stable or not. Justify your answer.

(a)

0 0 o 0
A=lo o ol, B=|1], c=[g (1’ (I)J,a,ndDzo.
0 0 -1 0

Solution: Inorder to determine the stability of the system, we first need to determine its eigenvalues
or poles. Since in this case, the state matrix A is diagonal, we observe the eigenvalues directly
from the diagonal elements as A\; = 0, A = 0, and A3 = —1. The eigenvalue A3 has a negative
real part, and it would generate an asymptotically stable response. The eigenvalues A\; and )\,
are both zero, and each would generate a constant response individually. However, if they are
cascaded, a constant response generated by the first one would result in a ramp response by the
second one. In this case, since the state matrix A is diagonal, the two zero-valued eigenvalues
don’t affect each other, or they are not cascaded. Therefore, each of the eigenvalues A; and A\,
would generate a constant response resulting in a marginally stable response. Since there are
no more eigenvalues, we conclude that the system is marginally stable.

In order to determine the bounded-input-bounded-output stability of the system, we may de-
termine the transfer matrix and observe the poles of the system after all the reductions. The
transfer matrix of the system is given by

L[y](s)=(C(sI— A)'B+D) £ [u](s)

where £ [(~) ] (s) is the Laplace transform, and I is the appropriately dimensioned identity matrix.

In our case,
00 11l @ o o 17'To
C(sI-A)'B+D= 010 0 s 0 1[+0
- “L 0 0 s+1 0
[ 1/s 0 0 0
=r8 (1’ 1 0 1/s 0 1
o 0 1/(s+1) | | 0
o o01 F1(/)s [ o
o110 o | Lis]

We realize that the only pole that is visible in the transfer matrix is on the imaginary axis. Since
that pole would generate a ramp response for a step input, the system is not bounded-input-
bounded-output stable.

In summary, the system is marginally stable, and it is not bounded-input-bounded-output stable.
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(b)

0 1 0 1 Lo 1
A=|{0 o of, B=]|o0], C=[1 . O},andD=0.
0 0 -1 1

Solution: Since the state matrix A is upper diagonal, we observe the eigenvalues directly from the
diagonal elements as A\; = 0, Ay =0, and A3 = —1. The eigenvalue A3 has a negative real part,
and it would generate an asymptotically stable response. The eigenvalues \; and A2 are both
zero, and each would generate a constant response individually. However, if they are cascaded.
a constant response generated by the first one would result in a ramp response by the second
one. In this case, since the state matrix A is in Jordan form, the two zero-valued eigenvalues are
cascaded, and they affect each other. Therefore, the state corresponding to A2 would generate a
constant response, and the state corresponding to A; would then generate a ramp response. As
a result, we conclude that the system is unstable.

In order to determine the bounded-input-bounded-output stability of the system, we may de-
termine the transfer matrix and observe the poles of the system after all the reductions. The
transfer matrix of the system is given by

L[y](s) = (C(sI - A)"IB +D) £ [u](s)

where [ [ ) ] (s) is the Laplace transform, and I is the appropriately dimensioned identity matrix.
One method to determine the inverse of (sI — A) is to use row operations on the augmented
matrix [ (sI — A) I'] to generate [I (sI-A)"! .

[ s -1 0 1 0 0 ]
— 0 1 0 0 1/s 0
| 0 0 1 0 0 1/(s+1) |
[ s 0 0 1 1/s 0 ]
— 0 1 0 1/s 0
| o 0 1 0 0 1/(s+1) |
[ 1 0 0 1/s 1/s2 0 ]
— 0 1 0 0 1/s 0
] 0 0 1 0 0 1/(s+1) |
Therefore,
10 1] [ 1/s 1/s? 0 1
C(sI-A)™'B+D= 11 0 0 1/s 0 0| +0
- : 0 0 1/(s+1) 1

-

(1 0 1] 1/s [ 1/s+1/(s+1)
0 B [ 1/s '
| 1/(s+1)
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Because of the pole at zero, the step response would contain a ramp function; and as a result
the system is not bounded-input-bounded-output stable.

In summary, the system is unstable, and it is not bounded-input-bounded-output stable.




