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1. Determine 
A 0 0 1  
0 x 0 0  

O O O X  

Show your work and simplify the expressions as much as possible. 

Solut,ion: We can compute a matrix function, that has a non-trivial Taylor's Series Expansion, by 
its expansion along with the use of the Cayley-Hamilton's Theorem or by the use of a simplifying 
transformation, where 

f (B) = ~f (Q-~BQIQ-' 
for a transformation Q, such that Q-'BQ is diagonal or in jordan form, and the evalua,tion of 
f (Q-IBQ) is directly performed. 

In this case, the matrix is almost in block-diagonal jordan form, since the first and the fourth 
eigenvalues are related, as well as the third and the second eigenvalues. 

T 
We let I = [ XI 5 2  1 3 1 4  ] be a vector in the original space and 53 = [ Z1 i.2 23 Z4 l T  
be the transformed vector. To bring the related first and the fourth eigenvalues next to each 
other, we let 

Then we place the third and the second eigenvalues next by letting 

Here, we swapped the order of the original placement, since we wa.nt the identity element below 
the diagonal to be above the diagonal in the jordan form. Rewriting the above equa.tions in 
ma.trix form, we have 

53 

or by taking the inverse of the coefficient matrix, we obtain the transformation matrix 
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Therefore, 

where 

As a result, we get 

A 0 0 1  A 1 0 0  
O X 0 0  O X 0 0  

A = c o s [  0 1 x 0  0 0 x 1  ] I Q - l  

O O O X  O O O X  

cos(X) d (cos(X)) /dX 0 0 
cos (A) 0 0 

0 COS(X) d (COS(X) ) /~X ] Q-l 
0 0 0 cos(X) 

After simplifying the above expression, we get 

0 0 -sin(X) 
cos(X) 0 

0 -sin(X) cos(X) 0 
0 0 0 cos (A)  

2. The block diagram of a control system is given below. 

Obtain a state-space representation of the system without any block-diagram reduction. 

S~lut~io i i :  In order to obtain a state-space representation without any block-diagram reduction or 
without determining the closed-loop transfer function, we need to realize the individual bloclts 
and use the complete block diagram to generate the state-space equations. 
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We may use a number of possible forms to realize the blocks. If we use the controller canonical 
form, we get the following diagram. 

After assigning the state varia.bles as shown in the figure, we obtain 

and 

After substituting for y in the x4 equation, we obtain the state-space representation based on 
the controller canonical form 

If we use the observer realization form for each of the blocks, then we obtain a different state- 
space representation. 
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Similarly, we obtain 

and 

where 

After substituting yl and y into the ecluations, we get the state-space representation based on 
the observer canonical form 
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3. A control system is described by 

where u,  x ,  and y are the input, the state, and the output variables, respectively. 

T (a) Determine z(t) for t > 0, when x(0) = [ 0 0 9 ] , and u(t) = 0 for t  2 0. 

Solution: The general solution to the state-space representation of a system described by 

is obtained from 

where I is the appropriately dimensioned identity matrix. 

In our case, 

and u(t)  = 0 for t 2 0. As a result, the integral term in the solution of x is identically 
zero. Moreover, since the initia.1 condition x(0) has the first two elements zero, we need to 
calculate only the third row of the state transition matrix eAt .  

We may use a lot of different approaches to determine the state transition matrix, such as 
the Taylor's Series Expansion along with the Cayley-Hamilton Theorem, or a simplifying 
tra8nsformation, or the inverse Laplace Transform of ( s I  - A)- l .  However, since we need to 
only compute the third row, the inverse Laplace Transform approach would be the easiest. 
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eAt = L;' [ ( s I  - A)-I ] ( t )  

* * - (1/9)e-~~ + (1/9)e-'It 

* * -(1/9)e-~~ + (1/9)e-'It 

* * (1 /9)e -~~  + (8/9)e-'lt 

As a result, 

* * - (1 /9 ) e -~~  + (1/9)e-lit 

x( t )  = eAtx(0) = * * 
* * (1 /9)e -~~  + (8/9)e-'It 
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(b) Determine the transfer function of the system. Show your work clearly. 

Solut.ion: The transfer function of a control system described in the state-state representation 

x ( t )  = Ax ( t )  + Bu(t)  , 

where in our case 

Here, I is the appropriately dimensioned identity matrix. 

Therefore, 

In other words, the transfer function is H ( s )  = 0. 

(c) Determine the Marltov Parameters of the system. Show your work clearly. 

Solution: The markov parameters of a control system described in the state-sta.te representa- 
tion 

is given by 
ho = D and hi = CA~-'B 
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for i = 1, . . . , where in our case 

Here, I is the appropriately dimensioned identity matrix. 

By direct substitution, we get 

and 

due to the Cayley-Hamilton's Theorem. In other words, the marltov paramaters are all 
zero. 

Indeed, this result is also obvious from the transfer function, since 

4. A time-varying linear control system is described by 

where u and z are the input and the state variables, respectively. Determine the state-transition 
matrix @(t, to).  

Solution: In this case, the state matrix A is upper triangular, so both eigenvalues are at Xl,2(t) = 

a sin ( t )  . 
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When the state matrix and its integral commute, or when the commutativity condition A(tl)A(t2) = 

A(t2)A(tl) is satisfied for all tl and t2; the state-transition matrix is given by 

In our case the commutativity condition holds, since. 

We may use the Cayley-Hamilton's Theorem to determine the state-transition matrix directly, 
such that 

@(t, to) = e( J:o A(T) 4 = + cul A@) 

for some cue and crl. 

However, there's a difficulty with the application of the theorem, when there are repeated 
eigenvalues in the time-varying case. The set of equations for the repeated eigenvalues are 

As we may observe, there's a problem with the derivative of the exponential term, since the 
exponentia.1 term has the variable X(T), whereas the derivative is with respect to X(t). 

There's no easy way to fix this difficulty as long as the time-varying eigenvalue or the time- 
varying state matrix is inside the integral. 

In order to consider a case where the time-varying state matrix is not inside an integral, we may 
work on the integral of the matrix instead of the matrix itself. In other words, we may let 

The eigenvalues of Aint are both at Xint,,, (t, to) = -a(cos(t) - cos(to)). 
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Now, the Cayley-Hamilton's Theorem may be used to determine the state-transition ma.trix 
from A,,,, such that 

for some ainto and aintl. 

Application of the eigenvectors gives the two equations to solve for the unknown scalars, such 
that 

e ( " n t ( t l t ~ ) )  = a;.,, + aint, ~~,,.(t,  to), 

and 

, ( ~ i n t ( t , t o ) )  = a i n t l .  

In our case, we get 

1 ,(hint(t?to)) = 
a i n t l  1 

L j / , i , l , i - n  (COs~i~-ccxiiml~ )I' 

or 

,-a ( cos ( t ) - c~ ( ' o ) )  = aintO - aint,a(cos(t) - cos(to)), 

,-a ( cos ( t )-cm(to)) = aintl. 

Solving for the first variable, we get 

sin,, = (1 + a(cos(t) - cos(to)))e-a(cos(t)-cos(t~)) , 

a i n t l  = 
e-a (m(t) -ca(to)) 

As a result, the state-transition matrix is 


