EE 431 Exam#2 Dec. 07, 2004

. 75 minutes
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1. A continuous-time linear control system is described by

() = [ " B ] 2(t) + [ ) ]u(t),

yt)=[1 1]a@),
where u, «, and y are the input, the state, and the output variables, respectively.

(a) Design a control action for the system using a linear combination of the dirac-delta function and its
derivatives as the input, such that the state =(0,) is obtained from the initial state z(0_), where

a:(O_)=[g], and:v(0+)=[_i].

Here, t = 0_ represents t = lim,,o(7), and ¢ = 0. represents t = lim (7). (25pts)

HINT: The nth derivative of the dirac-delta function (distribution) 5(™ for a natural number n is such that

® [0 —tydr = 1),
s
where f is a n times differentiable function, Sisaset,andt, T €S.

(b) Design a continuous and integrable control action u(t) for 0 < t < 1, such that the state z(1) is
obtained from the initial state x(0), where '

m(0)=[g],andw(1)=[_}].

(25pts)
HinT: For a natural number n and a scalar «,
/tneat dt= (¢ — Etn—l + ﬂ_(_n__l_)tn—z _ + (__1)11_7_71 fa_t
a a? or ) a
2. The transfer matrix of a control system is given by
1 1
H(s) = s(s+1) s
2
_s*2
s2(s+1)
(a) Obtain its left or right coprime factorization. (25pts)

. (b) Obtain a controllable and observable state-space realization of the system. (25pts)
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1. A continuous-time linear control system is described by
. -1 1 0
sy =[ 75 ) e+ [ 7]
yy=[1 1]=0),

where u, ©, and y are the input, the state, and the output variables, respectively.

(a) Design a control action for the system using a linear combination of the dirac-delta function and its
derivatives as the input, such that the state 2(04.) is obtained from the initial state «(0-), where

m(O_)=[g],anda:(O+)=[_i].

Here, t = 0_ represents ¢ = lim;,o(7), and t = 0 represents { = lim\ o(7).
HINT: The nth derivative of the dirac-delta function (distribution) 5™ for a natural number n is such that

[ £@ =0 ar = (-7,

where f is a n times differentiable function, Sisaset,andt, TES.

‘ Solution: The general solution to the state-space representation of a linear system described by
&(t) = Az(t) + Bu(t)
is obtained from .
z(t) = ®(t,0)x(0) +/ &(t,7)Bu(7)dT,
where u and « are the input and the state variab(;es, respectively, and
B(t, to) = eAt%),

To instantaneously change the states, we need to apply a linear combination of the dirac-delta
function and its derivatives as the input. We also know that if the system is reachable, there
exists such a linear combination. Since the system is second order, we only need two terms in
this linear combination. So, we let

u(t) = uod(t) + u1d(t).

Substituting the input to the solution equation for the state variable, we get

z(t) = etz (0_) + / ‘At g (uoa(f) + uIS(r)) dr

d
— At A(t-7) _ A(t—T)
e'x(0-) + (e Bug + ( 1)d’7' (e Bul))TZO
= eAt:v(O_) + (eAtBuo + eAtABul)
_ LAt At Ug | .
= etz (0_)+e** [ B AB ][ul],

1
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. > [ to ] = C(A,B)™! (e_Ata:(t) - a:(O_)),

U1

where G(A, B) is the controllability matrix. In our case, the system order n = 2, and

e(A,B)=[B|AB|---|An-lB]=[B|AB]=[2._}].

For t = 04, we get

Therefore, ]
u(t) = 8(t).

(b) Design a continuous and integrable control action u(t) for 0 < ¢t < 1, such that the state z(1) is
obtained from the initial state z(0), where

m(0)=[g],andm(1)=[_”.

. HINT: For a natural number n and a scalar a,

- 1 at
/tneat dt = (t" -ty "(_"—z,l)t"" -+ =D _"_') e
[41 o % o

Solution: The general solution to the state-space representation of a linear system described by
z(t) = Ax(t) + Bu(t)
is obtained from .
z(t) = ®(¢,0)x(0) +/0 ®(t,7)Bu(r)dr,
where u and z are the input and the state variables, respectively, and
| B(t,t0) = eAlt=to)
In our case, the state matrix A is in jordan form, and

e—(t—to) (t _ to)e—(t—to) :I

Alt—
B(t,to) = A7) = [ 0 o~ (t—to)

One method to solve the given control problem is to separate the control signal into two portions,
such that one of the portions can be moved out of the integral, and the integral term is invertible.

. So, we let

u(r) = (A¢-"B)" (),
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where ¢ needs to be determined from the given conditions. With this control signal, we get

x(t) = e'a(0) + ( / " At=n) p T A" d'r) £()
0

= eAtm(O) + Q:(O, t)g(t)’

where the controllability grammian

t
€(0,t) = / At=7) pBT A=) 47,
0

Since the controllability grammian always has an inverse, if the system is reachable; we get
£(t) = €71(0,2) ((t) — e**=(0)) ,

or

u(r) = (eA(t_T)B)T £(t) = (eA“—T)B)T ¢ 1(0,t) (x(t) — e*tx(0)) .

To determine the control signal, we first compute

—~(t—7) _ —(t—7) _ —(t—7)
At—T)p _ | € (t—rT)e 0] [ (t—17)e

and

t T
€(0,t) = / A=) B (eA(t‘T)B) dr
0

t N2-2(=7)  (f _ )e—2(t—T)
=/ [(t T)e (t—")e ]dT
0

(t — 7)6—2(t—7) e—2(t—7)

0 2.-2u  0—20
_ u-e ue
"‘/0 [ Ne—2u e~ 2 ] du,

where y = t — 7. Using the indefinite integral

/t"eat dt = (t" — gt"*l + -————n(na; Din2_ 4 (—1)"%) e_;f_
we get
- @+ /(=2 (=2) (w = (1/(=2))e7/(-2) -
C(O,t) = _2 -2
| (u— (1/(~2)))e2/(-2) "2 /(~2) o

—(2 4 p+1/2)e#/2 —(p+1/2)e7)2 ]“=t

L —(p+1/2)e724/2 —e" 242 =0

_[ (@ +err/2e7/2) = (-0/2/2) (—(t+1/2>e-2f/2)—(—(1/2)/2)}
(—(t+1/2)e72/2) — (=(1/2)/2) (—e72/2) — (-1/2)

—(2/2+t/2+1/4)e 2 +1/4  —(t/2+ 1/4)e™% +1/4
—(t/2+1/4)e" 2 +1/4 —(1/2)e7% +1/2
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. In our case, we need

[ (1-5e?%)/4 (1-3e2)/4] _ [ 00808 0.1485
€(0,1) = [ (1-3e72)/4 (1-€2)/2 ] - [ 0.1485 0.4323 ]

and
i [ 335207 —11.5169
o= [ ~11.5169  6.2689 ]
As a result,
T
u(r) = (eA(l”T)B) ¢1(0,1) (z(1) — e*z(0))
[ (1-7)e(-0 1T 335207 —11.5169 1 40
- e=(1-7) ~11.5169  6.2689 1|17 % o
= 45.0466(1 — 7)e~1"7) — 17.7858¢~ (1~
= 10.0287¢" — 16.57177¢",
or

u(t) = 10.0287¢! — 16.5717te’ for 0 <t < 1.

2. The transfer matrix of a control system is given by

o :

1
H(s) = s(s+1) s
s+ 2 0

s2(s+1)

(a) Obtain its left or right coprime factorization.

Solution:

Right coprime factorization: For the right coprime factorization, we start with an initial
right factorization of H = NoDg ! such that

11
H(s) = s(s+1) s
s+2 0
| s2(s+1)
1
S 8(8 + 1) ;—2(—S+—1—)' 0
s+2 0 0 —L—
. L s2(s+1)

= No(s)Dg ™ (5)-
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From the above factorization, we get

|

s*(s+1)
0

s"’(s0+ 1) ] '

Fall 2004  5/11

Next, we form an augmented matrix from Ny and Dy, perform column operations until we
obtain the Hermite form, and factor out common polynomials from each column.

[ s s(s+1) ]
No(s) s+ 2 0
Dy(s) s2(s+1) 0
L 0 s2(s+1)
Dividing the second column by s(s + 1), we get
[ s 1 ]
Ni(s) s+2 0
Dis) | | s2+1) 0
0 s
Interchanging the first and second columns, we get
[ 1 s |
Na(s) 0 s+ 2
Dy(s) - 0 s?(s+1)
s 0

L

Multiplying the first column by —s and adding to the second, we get

]

1 0
Ns(s) 0 s+2
Ds(s) B 0 s?(s+1)
s —s2

The last operation resulted in a coprime factorization, since the rank of the above augmented
matrix will not drop for any value of s, and the degree of the determinant of D(s) is the
same as the sum of its highest column degrees. As a result, one right coprime factorization

of the control system is

H(s)= N(s)D7'(s) =

0
s+2

Il

s?(s+1

-1
)
2 '



EE 431 Exam#2 Solutions Fall 2004 6/11

Left coprime factorization: For the left coprime factorization, we start with an initial left
. factorization of H = Dy 1 Ny, such that

1
H(s) = s(s+1)
5§42
| s%2(s+1)

[

1

TS-ZT-S-F_I) 0 S S(S+ 1)

0 - 2
2(s + 1) s+ 0

= D5 (s)No(s)-

From the above factorization, we get

[ s%(s+1) 0
DO—[ 0 32(s+1)]'

Next, we form an augmented matrix from Np and Do, and perform row operations until we
obtain the Hermite form.

. [ s s(s+1) s2(s+1) 0 ]

[ Nos) | Dots) ] s+2 0 0 s2(s+1)

Dividing the first row by s, we get

[Nug

1 +1 s(s+1 0
Dl(s)]=|: ° ( ) }

s+2 0 0 s2(s+1)

Multiplying the first row by —(s + 1) and adding to the second, we get

[ Ns(s)

1 s+1 s(s+1) 0
Ds(s) ] =
0 —(s+1)(s+2) |-s(s+1(s+2) s*(s+1)

Dividing the second row by —(s + 1), we get

1 s+1 s(s+1) 0
[ Ma() | Dals) | = ‘
0 s+2 s(s+2) —s?
. The last operation resulted in a coprime factorization, since the rank of the above augmented

matrix will not drop for any value of s, and the degree of the determinant of D(s) is the
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same as the sum of its highest row degrees. As a result, one left coprime factorization of
the control system is
-1
s(s+1) 0 1 s+1

H(s)=D7'(s)N(s) =
s(s+2) —s? 0 s+2

(b) Obtain a controllable and observable state-space realization of the system.

Solution: A controllable and observable state-space realization is a minimal realization. We may
use a right or a left coprime factorization, and in each case, we will get a controllable and

observable system.

Using right coprime factorization: In this case, we start with a right coprime factorization
of the system, and for the given transfer matrix, we have

-1
1 0 0 s%(s+1)

H(s) = N(s)D7Y(s) = ,

0 s+2 S —s

Next, we need to decompose D(s) and N(s), such that

D(s) = DpSec(s) + D1 ¥e(s),

and
' N(s) = N, ¥c(s),

where ) }

k1 Skl-—l

Se(s) = s*2 and U, (s) = 1

8k2_1

are block-diagonal matrices, and k; is the highest degree of the polynomials on the ith column
of D(s). In our case, k1 =1, k2 = 3,

110
s| 0
Se(s) = and To(s)= | 9| 1
0] s® 0| s
0| s2
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The decompositions become

0 s%(s+1 0 s%+4s°
D(s) = [ ( ) ) = [ .
S -8 s —s
110
0 l 1] [s | 0 0 | o o 1|5
= Dp_Sc(s) + D;, ¥c(s) = + )
1{o]]o]s olo o —1]fo]s
0| s?
and
1(0
1 110 0 O
N(s) = [ 0 ]=Ntc‘1’c(5)= 011
0 s+2 0(2 1 0 0| s
0| s?
The controller canonical-form realization is, then, given by
a(t) = (42 - BeD; 1 D1 Co)x(t) + (BeD;u(t)
y(t) = (N.CJ)z(t),
where
0 1 0 7 o 7
0 0 1
0 0 0 1
0 1 0 0
Al = - : , Bl= :
0 0 1 0
0 0 0 1

O O O =
= o O O
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and C? is the 4 dimensional identity matrix. So,

0 00O 10 . 1000
A = 0010 |00 o1} o 0o o0 1 0100
7100 01 00 10 0 0 0 -1 0010
| 0 0 00 01 0 001
[0 0 0 1
10 o 1 0
{0 o0 o0 1}
| 0 0 0 -1
10 01
g_|00|[01 7 loo
¢ 100 10 o o}’
01 10
and
1000
C. = 1000 0100 _[100O00O0
710210 0010 |0210]/|
0 001
Therefore, one possible state-space representation of the system is given by
[0 0 0 17 0 1
. 0 0 1 o0 0 0
0 0 o0 -1 1 0

1 0 0 0]
vO=|¢o 5 1 olo®

L

where u, x, and y are the input, the state, and the output variables, respectively.

Using left coprime factorization: In this case, we start with a left coprime factorization of
the system, and for the given transfer matrix, we have

-1
+1 0 1 +1
H(s)= D(s)N(s) = | SCTY s .
s(s+2) —s? 0 s+2
Next, we need to decompose D(s) and N(s), such that
D(s) = Sy(s)Dy, + ¥, (s)Dy,,

N(s) = T, (s) Ny,

S,r(s) = Sl2 and \Ilr(s) = 312_1 o1
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are block-diagonal matrices, and [; is the highest degree of the polynomials on the ith row
of D(s). In our case, [; =2, [ =2,

210 s 110 0
Sr(s) = , and ¥, (s) = .
0 s2 0 0]s 1

The decompositions become

s(s+1) 0 ] s+ 0
D = =
(#) s(s+2) —s2_ [32+2s —32]
' 110
s2|o 1| 0 s 1|0 0 00
= Sr(8)Dp, + ¥r(s)Dy, = + )
ols2||1]-1 0 0|s 1{|2]o0
‘ - 0|0
and
011
1 s+1 s 1|10 O 1)1
N(s) = [ jl =V, (s)N;, = I
0 s+2 0 0fs 1||o]1
012

The controller canonical-form realization is, then, given by

&(t) = (45 - BaDy, Dy, Co)(t) + (BoNy, Ju(t)

y(t) = (D Co)=(t),

where } i}
0 1 0
0 0 1
0 0 0
0 1 0
Ag = . ’
0 0 1
0 0 0

L

BY is the identity matrix with dimension Y, l;, and

1 0 ... 0
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In our case,

A

BY is the 4 dimensional identity matrix, and

s
So,
[0 1 0 O 1
0 00O 0
A°‘0001_0
| 0 0 0 O 0
-1 1 00
_ 0 00O
“ -2 00 1|
| 0 0 0 O
10
01
B"—OO
00
and

o[ 2]

[ -1 1
. 0 0
z(t) = 2 0
| 0 0
[ 1 0
¥yt =1 |

o O

o O

OO =O
(== el
—= o OO

o~ OO
O OO

o O (s I

o O = O

1 000
0010

Therefore, another possible state-space representation of the system is given by

0

0
0
0

o

-1

0

0
1
0

0
0 -

o O
o O

o o
[

O N O ==
== e R e i ]

[CJ g S

|-
x(t) +

x(t),

1
1

0

1
0
0

o O~ O
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BN bt pd b

0 O
-1 0

u(t),

[N S S Sy Y

where u, z, and y are the input, the state, and the output variables, respectively.




