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1. A control system is described in state-space representation, such that

x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

where u, x, and y are the input, the state, and the output variables, respectively. For the following
A, B, C, and D matrices, determine whether the system is asymptotically stable, marginally stable, or

unstable; and whether it is bounded-input-bounded-output stable or not. Justify your answer.
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B=|1], C=[111],andD=0.

—

B=|1], C=[111],andD=0.

B=|0|, C=[111],adD=0.

2. A discrete-time linear control system is described by

x(k+1)=[

0.3 1.0 0.50

~02 05 ]"(’“) + { 0.25 JU(k),

y(k)=[1 1]x(k),
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where u, x, and y are the input, the state, and the output variables, respectively. Determine whether
or not an initial condition can be uniquely determined by observing the future values of the output
and control. If such an observation is possible, then determine the initial condition x(0), when the

output sequence is

{ y(k)

{u(k) [k=0,1,2,...} =

k=012..}= {1, 3.65 1.645, —0.5365,... } for the input sequence
1, -1, -1, 1,... }.

(25pts)



3. During the design of the following control system, some of the locations of the sensors and actuators need
to be chosen such that the resultant system is minimal. Determine all the possible values of the constants
a, b, ¢, d, and e that would result in a minimal system.

O

0 1 1 b
-1 0 [x(®)+ a 0 |u)
0 0 -1 ¢
1 1
LX)

where u, x, and y are the input, the state, and the output variables, respectively.

4. The block diagram of a control system is given below.

x3

u @

T2

0|
@ | -

@ | =

Design a proportional-integral-derivative (PID) controller

u(t) = Kpy(t) + K1 [*y(r) dr + Kpy(t),

(20pts)

where u and y are the input and the output variables, respectively, such that the closed-loop poles of the
system are at s = —1 and s = —2 £ j1. Here, Kp, K|, and Kp are the proportional, the integral, and
the derivative constants, respectively. Assume that the internal states z1, 22, and z3 are available to the

controller.

(25pts)
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1. A control system is described in state-space representation, such that
x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

where u, x, and y are the input, the state, and the output variables, respectively. For the following
A, B, C, and D matrices, determine whether the system is asymptotically stable, marginally stable, or
unstable; and whether it is bounded-input-bounded-output stable or not. Justify your answer.

(a)
0 0 0 1
A=|0 0 0|, B=|1|, C=[111],andD=0.
0 0 -1 1

Solution: In order to determine the stability of the system, we first need to determine its eigenvalues
or poles. Since in this case, the state matrix A is diagonal, we observe the eigenvalues directly
from the diagonal elements as A\; = 0, Ay = 0, and A3 = —1. The eigenvalue A3 has a negative
real part, and it would generate an asymptotically stable response. The eigenvalues \; and \,

. are both zero, and each would generate a constant response individually. However, if they are
cascaded, a constant response generated by the first one would result in a ramp response by the
second one. In this case, since the state matrix A is diagonal, the two zero-valued eigenvalues
don’t effect each other, or they are not cascaded. Therefore, each of the eigenvalues A\; and )\,
would generate a constant response resulting in a marginally stable response. Since there are
no more eigenvalues, we conclude that the system is marginally stable.

In order to determine the bounded-input-bounded-output stability of the system, we may de-
termine the transfer function and observe the poles of the system after all the reductions. The
transfer function of the system is given by

L[y](s)=(C(sI-—A) B+ D)c[u](s)

where £ [(') ] (s) is the Laplace transform, and I is the appropriately dimensioned identity matrix.

In our case,
[ s 0o 17'[1
C(sI-A)™'B+D=[111]| 0 s 0 1|40
| 0 0 s+1 1
[ 1/s 0 0 1
=[11 1] 0 1/s 0 1
i 0 0 1/(s+1) 1
® i
11 1 35+ 2
=[11 1] 1/s ==4+-+ = .
| 1/(s+1) s s s+1 s(s+1)
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We realize that only two poles of the system are visible in the transfer function; and one of
them has a negative real part, and the other one is on the imaginary axis. Since the one on the
imaginary axis would generate a ramp response for a step input, the system is not bounded-
input-bounded-output stable.

In summary, the system is marginally stable, and it is not bounded-input-bounded-output stable.

0 1 0 1
A=|(0 0 0|, B=|1|, C=[111],andD=0.
0 0 -1 1

Solution: Since the state matrix A is upper diagonal, we observe the eigenvalues directly from the

diagonal elements as A\; = 0, A2 = 0, and A3 = —1. The eigenvalue A3 has a negative real part,
and it would generate an asymptotically stable response. The eigenvalues A; and )y are both
zero, and each would generate a constant response individually. However, if they are cascaded,
a constant response generated by the first one would result in a ramp response by the second
one. In this case, since the state matrix A is in Jordan form, the two zero-valued eigenvalues are
cascaded, and they effect each other. Therefore, the state corresponding to A2 would generate a
constant response, and the state corresponding to A; would then generate a ramp response. As
a result, we conclude that the system is unstable.

In order to determine the bounded-input-bounded-output stability of the system, we may de-
termine the transfer function and observe the poles of the system after all the reductions. The
transfer function of the system is given by

£[y](s)= (C(sI - A)~'B+ D) £ [u](s)

where £ [ ) ] () is the Laplace transform, and I is the appropriately dimensioned identity matrix.
One method to determine the inverse of (s/ — A) is to use row operations on the augmented
matrix [ (sI — A) I] togenerate [I (sI—A)7!].

s -1 0 1 0 0

0 0 s+1| 0 0 1

[ ] -1 0 1 0 0 !
— 0 1 0 0 1/s 0
0 0 1 0 0 1/(s+1) |
i s 0 0 1 1/s 0 ]
— 0 1 0 0 1/s 0
o 0 1 0 0 1/(s+1)
i 1 0 0 1/s 1/s? 0 ]
— 0 1 0 0 1/s 0
0 1 0 0 1Y(s+1)
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Therefore,
( 1/s 1/s2 0 1
C(sI-A)™'B+D=[11 1] 0 1/s 0 1]+0

o 0 1/(s+1) 1

- 2

/s +1/s 1 1 1 1 3243542

=[11 1] 1/s =t ettt AT

| 1(s+1) s s?2 s s s2(s+1)

Because of the repeated pole at zero, the impulse response would contain a ramp function; and
as a result the system is not bounded-input-bounded-output stable.

In summary, the system is unstable, and it is not bounded-input-bounded-output stable.

0 1 0 1
A={0 0 O0f, B=|0|, C=[111],andD=0.
0 0 -1 1

Solution: Since the state matrix A is upper diagonal, we observe the eigenvalues directly from the

diagonal elements as A\; = 0, A\ = 0, and A3 = —1. The eigenvalue A3 has a negative real part,
and it would generate an asymptotically stable response. The eigenvalues A, and )\, are both
zero, and each would generate a constant response individually. However, if they are cascaded,
a constant response generated by the first one would result in a ramp response by the second
one. In this case, since the state matrix A is in Jordan form, the two zero-valued eigenvalues are
cascaded, and they effect each other. Therefore, the state corresponding to A, would generate a
constant response, and the state corresponding to A; would then generate a ramp response. As
a result, we conclude that the system is unstable.

In order to determine the bounded-input-bounded-output stability of the system, we may de-
termine the transfer function and observe the poles of the system after all the reductions. The
transfer function of the system is given by

L[y](s) = (C(sI - A)~'B+ D) £ [u](s)

where £ [ ) ] (s) is the Laplace transform, and I is the appropriately dimensioned identity matrix.
One method to determine the inverse of (sI — A) is to use row operations on the augmented
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matrix [ (sI — A) 1] to generate [ I (sI— A)™! ].

s -1 0 1 0 0
0 s 0 0 1 0
0 0 s+1| 0 0 1
[ s -1 0 1 0 0 ]
— 0 1 0 0 1/s 0
0 0 1 0 0 1/(s+1) |
[ s 0 0 1 1/s 0
- 0 1 0 0 1/8 0
0 0 1 0 0 1/(s+1) |
[ 1 0 0 1/s 1/s? 0 i
— 0 1 0 0 1/s 0 :
0 0 1 0 0 1/(s+1) |
Therefore,
[ 1/s 1/s? 0 1
C(sI-A)™'B+D=[11 1] 0 1/s 0 0|+0
0 0 /(s +1) 1
[ 1/s
=[11 1] 0 =14 11=2S+1.
| 1/(s +1) s s+ s(s+1)

We realize that only two poles of the system are visible in the transfer function; and one of
them has a negative real part, and the other one is on the imaginary axis. Since the one on the
imaginary axis would generate a ramp response for a step input, the system is not bounded-
input-bounded-output stable.

In summary, the system is unstable, and it is not bounded-input-bounded-output stable.

2. A discrete-time linear control system is described by

e+ =| gy o3 | x0+ | g3 |u00)

y(k)=1[1 1]x(k),

where u, x, and y are the input, the state, and the output variables, respectively. Determine whether
or not an initial condition can be uniquely determined by observing the future values of the output
and control. If such an observation is possible, then determine the initial condition x(0), when the
output sequence is { y(k) ! k=012..}=1{1 365 1645, —0.5365,... } for the input sequence
{uk) |k=0,1,2,...} ={1, -1, -1, 1,... }.

Solution: The property of being able to uniquely determine the initial condition x(0) by observing the
future values of the output and control is called the observability property. This property may be



EE 431

Exam#2 Solutions Fall 2001 5/9

checked in a number of ways, where one such way is from the rank of the observability matrix

C
CA
0(C,A) = .
CA™!
Here, the nth order system is described by
x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

where u, x, and y are the input, the state, and the output variables, respectively. In our case, the

system order n = 2, and
C 1
CA| |01 15|

11
renk[ 0] = [0.1 15 ] =2

0(C, A) =

Since the rank of the observability matrix

which is the system order; the system is observable, and the initial condition can be uniquely
determined by observing the future values of the output and control. To determine the initial
condition x(0), we need at most two of the output values, since the order of the system is two. From
the system equations,

y(0) = Cx(0)
y(1) = Ox(1) = CAx(0) + CBu(0),

or in vector form
[ ZE?; ] N [ gA ] x(0) + [ o ]U(O)-

We can solve for x(0) from the above equation, since the observability matrix is invertible.

«0=[54] ([¥5] [ 5 ]w0)
[ ] (s ][ ]9

_ 1 1.5 -1 1]_1[-14
T 14| -01 1 29| 14 28 |-

Therefore, the initial condition
-1
x(0) = [ 9 ] .
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3. During the design of the following control system, some of the locations of the sensors and actuators need

to be chosen such that the resultant system is minimal. Determine all the possible values of the constants
a, b, ¢, d, and e that would result in a minimal system.

0 0 1 1 b
x(t)=]10 -1 0 |x(t)+ a 0 |ut)
1 0 0 -1 ¢

=g 4 L]

where u. x, and y are the input, the state, and the output variables, respectively.

Solution: For a minimal system, the system needs to be observable and reachable.

Observability: One method to check the observability of the system is by checking the rank of the
observability matrix
c
CA
0(C,A) = )

ey
Here, the nth order system is described by
x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

where u, x, and y are the input, the state, and the output variables, respectively. In our case,
the system order n = 3, and

1 1 1
o 0 d e
0C,A)=|ca |= i :clz (1)
C A2
1 1 1
|0 d e ]

For observability, we need to have 3 linearly independent rows or columns O, since the order of
the system is 3. Considering the columns of O, if the equation

Fl- [ 17 F1 7
0 d e
1 -1 1

k1 e + ko —d + k3 0 =0
1 1 1
o] [ 4] Lel
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has a non-zero solution for k;, k2, and k3; then we don’t have 3 linearly independent columns,
‘ and the system is not observable. Rewriting the above equation, we get

ki +ky +k3 =0,

kgd + k3€ = 0,
ki —ks +ks =0,
kle - kzd = 0,
ki +ks +ks =0,

kod + kze = 0.

Subtracting the third equation above from the first equation, we get ko = 0. After substituting
kz = 0 and removing identical equations, we get

ki + ks =0,
k36 = 0,
kle = 0,
or kje =0, and k3 = —k;.
If e = 0; then k&1 = , k2 = 0, and k3 = —« for any non-zero o form a non-zero solution to

the linearly-independence condition, and the system is not observable. However, if e # 0; then
k1 = ko = k3 = 0 is the only solution, and the system is observable.

Reachability: One method to check the reachability of the system is by checking the rank of the
‘ controllability matrix

(:‘(A,B)z[B AB .. A”‘IB].
In our case, the system order n = 3, and
1 5|-1 ¢ 1
G(A,B)z[B|AB|AzB]= a 0|—-a O a 0
-1 ¢ 1 b|-1 ¢

For reachability, we need to have 3 linearly independent rows or columns C, since the order of
the system is 3. Considering the rows of C, if the equation

_ l-T r a-T —_1-T
b 0 c
-1 —a 1
kq c + ko 0 + k3 b =0
1 a -1
| b ] | 0] | ¢ |

has a non-zero solution for ki, k2, and kj3; then we don’t have 3 linearly independent columns,
and the system is not reachable. Rewriting the above equation, we get

ki +kea—ks =0,

klb + k‘3C = 0,

—kl - kza + k‘3 = 0,

‘ klc + k3b = 0,
ki +kea—ks =0,

kib + ksc = 0.
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After removing the identical equation, we have

k1 +kea—kz =0,
kb + kzc =0,
kic + k3b = 0.

Multiplying the first equation by (b— c¢) and subtracting it from the difference of the second and
third equations, we get

koa(b —c) = 0.
If a = 0 or b = c; then ky could be any non-zero value, and there will be a non-zero solution
to the linearly-independence condition. So, we need to have a # 0 and b # c as one of the
conditions for reachability.

Multiplying the second equation by b, then multiplying the third equation by —c, and adding
the two products together, we get
k(b — c?) =0.

We also need to have b2 # ¢? for a zero solution to the linearly-independence condition.

In a similar way, multiplying the second equation by —c, then multiplying the third equation by
b, and adding the two products together, we get

k3(b®> — c?) = 0.

Hence, if a # 0 and b% # c%; the only solution to the linearly-independence condition is the zero
solution, and the system is reachable.

Combining the conditions for observability and reachability, we conclude that the system is minimal,
if and only if a # 0, b? # ¢, and e # 0.

4. The block diagram of a control system is given below.

Z3

@D

» |-
» |-

Design a proportional-integral-derivative (PID) controller

u(t) = Kpy(t) + K1 [*y(r) dr + Kpi(t),

where u and y are the input and the output variables, respectively, such that the closed-loop poles of the
system are at s = —1 and s = —2 & j1. Here, Kp, K, and Kp are the proportional, the integral, and
the derivative constants, respectively. Assume that the internal states z1, z2, and z3 are available to the
controller.
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Solution: From an inspection of the system block-diagram, we observe that y=z3, § = ¢ = z;, and
Jy(r)dr = [zo(r)d7 = z3. So, the PID control is indeed a state-feedback control, where

u(t) = Kpzi(t) + Kpza(t) + Krzs(t).
To design for the control, we write the system equations from the block diagram.

£1(t) = z2(2),
232(t) = 233(t),
.’i‘3(t) = 2:1:1(t) + :Ez(t) - 2:1:3(t) + U(t);

or in matrix form

0 1 0 0
=10 0 1|x@®)+]|0|u),
2 1 -2 1

where x = [a:l To 1'3]T. For u(t) = [KD Kp Kz]x(t), we get

0 1 0
x(t) = 0 0 1 x(t).
Kp+2 Kp+1 K;-—2

We also observe that the system is in controller canonical form, and its transfer function can easily be
obtained from the last row of the state matrix. So, the characteristic polynomial of the closed-loop
system

QClosed—loop(S) =3 - (KI - 2)32 - (KP + 1)3 - (KD + 2)'

The characteristic polynomial of the desired system is obtained from the desired-pole locations, such
that

Gdesired(s) = (s = (=1)) (s = (-2 + j1)) (s — (=2 — j1)) = > + 55? + 9s + 5.

Comparing the coefficients of the closed-loop and the desired characteristic polynomials, we get

Ky —2=-5,
Kp+1=-9,
Kp+2= -5,

or K; = -3, Kp = -10, and Kp = —7. Therefore,

u(t) = —10y(t) — 3/ y(r) dr — 74(¢)
= —10z2(t) — 3z3(t) — Tz1(¢)-




