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1. Consider the ~llatrix 

A =  
0 n/3 

Determine cos(.4). Simplify the expressions as much as possible. 

2. The block diagram of a control system is given below. 

Obtain a state-space representation of the system without any block-diagram reduction. (20pts) 

3. A control system is described by 

T T 
where U = ,& [ Z L ]  = [ UI U2 ] and Y = L [Y] = [ Yl Y2 ] are the input and the output variables. 
respectively. Obtain a state-space representation of the system with no more than three state variables. 

(20pts) 

4. A continuous-time linear control system is described by 

where u .  x, and y are the input, the state, and the output variables, respectively. 

T 
(a) Determine ;yjt) for t > 0: when x(0) = [ -5 2 ] , and u( t )  = 0 for t  > 0. 

( b )  Determine the transfer function of the system. 



5. -4 control system is described in state-space representation, such that 

where u, x, and y are the input, the state: and the output variables. respectively. For the following 
A. B. C ,  and D matrices, determine whether the system is asymptotically stable, marginally stable. or 
unstable; and whether it is bounded-input-bounded-output stable or not. Justif). your anslver. 
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1. Consider the matris 

A =  
0 x / 3  

Determine cos(A). Simplify the expressions as much as possible. 

Solution: Any function, that has a non-trivial taylor series expansion, of an n th  order matrix call I,(. 
determined either by its taylor series expansion. where 

by the use of the Cayley-Hamilton's theorem, where 

for some scalars ai: i = 0: . . . , n - 1; or by diagonalization, where 

for a transformation T ,  such that T - ~ A T  is in jordan form and the evaluatioil of f ( T l . 4 ~ )  is 
directly performed. 

In the use of the Cayley-Hamilton's theorem, the scalars are dcterrnined by the application of t l ~ c  
eigenvectors to the above equation that results in the set of equations 

where XI, . . . . A, are the eigenvalues, and they are determined from 

det ( X I  - A) = 0. 

To be able to solve for all the unknown variables ao. . . . . a,: we need to have n linearly indepentlenr 
equations. However. when an eigenvalue is repeated. we get the same equation inore than once 111 

such a case, we use the partial derivatives of the equations for the repeated eigenvalue with respcJc r 
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for k = 1: . . . . r ,  where r  is the number of repetitions of the eigenvalue Xi. In our case, n = 3: so 

and the eigenvalues can be observed to be X 1 , 2 , ~  = n/3 ,  since the A matrix is upper diagonal. For 
f = cos, the set of equations becomes 

or for X = 7 ~ / 3  

Solving t,he above equations simultaneously, we get 

1 7 T  7r2 a 0 = - + - - -  & 1 
a1 = -- + -, and a2 = --. 

2 6 36' 2 6 4 

-4s a result. 

n2/9  0 2 a a / 3  

+ (-i) [ 0 7r2/9 21rb/3 . 
0 0 n2/9 

After silnplifyillg the above expression. we get 

1 
1/2 0 -&a/2 

112 -&b/2 
0 112 
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2. The block diagram of a control system is given below. 
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Obtain a state-space representation of the system without any block-diagram reduction. 

Solution: In order to  obtain a state-space representation without any block-diagram reduction or with- 
out determining the closed-loop transfer function, we need to realize the individual blocks anti 11se 
the complete block diagram to generate the state-space equations. 

(a) The first feedback gain block. (b) Controller realization form. 

(a) The second feedback gain block. (b) Controller realization form. 

The connected and "expanded" block diagram is shown below 

After assigning the state variables as shown in the figure, we obtain 
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where 

After substituting the ys and y4 expressions into the differential equations and writing them in 
matrix form, n-e obtain the state-space representation 

If we use the observer realization form for each of the blocks, then we obtain a different state-space 
representation. 

(a) The first feedback gain block. 

(a) The second feedback gain block. 

(b) Observer realization form. 

rn 
(b) Observer realization form. 
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The connected and "expanded" block diagram for this case is shown below. 

Similarly, we obtain 

where 

After substituting the y3 and y4 expressions into the differential equations ancl writing them is1 

matrix form, we obtain another state-space representation 

3. A control system is described by 

T 
where U = L [ u ]  = [ Ul U2 I T  and Y = L [Y] = [ Yl Y2 ] are the input and the output variables. 
respectively. Obtain a state-space representation of the system with no more than t,hree state variables. 

p p p p p p p p p - - - - - - - - -  
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Solution: From the transfer matrix, we observe that even though we have two inputs and two outputs. 
the second output is decoupled from the dynamics of the first output; since the poles are distinct. 
As a result, we may be able to realize the two output dynamics independently and factor out the 
common denominator for the first output. 

Ul(s) Ul(.s) r;(s) = [(s + l)(i + 3)l-I [ 1 + 3  2s ] [ ] = [s2 +4s + 3 1 1 [  s + 3 2s ] [ u2(s) ] 
('72 (4 

When the denominator polynomial is realized in the observer realization form, the two elements 
in the numerator matrix can be generated independently as the feedforward terms in the observer 
realization form. 

(a j  The feedback portion. (b) Observer realization form. 

When the two elements in the numerator matrix are generated as the feedforward terms, we get the 
followillg block diagram. 

The realization of the second output is straightforward; and when it is combined with tlle first 
output, we get the final form of the realization. 
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Next, with the assignment of the state variables as shown in the figure we obtain 

and 

After expressing the above equations in matrix form, me get the state-space representation 

4. A continuous-time linear control system is described by 

~ ( t )  = [ 1 1 ] x ( t ) +  [ 1 I ~ ( t ) ,  

where u,  x ,  and y  are the input, the state, and the output variables, respectively. 

T 
(a) Determine y ( t )  for t > 0,  when x(0) = [ -5 2 ] , and u(t) = 0 for t 2 0. 
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Solution: The general solution to the state-space representation of a system described by 

y ( t )  = Cx( t )  + Du(t)  

is obtained from 

where 
eAt = LC;' [ ( s I  - A)-'] ( t ) .  

Here, I is the appropriately dimensioned identity matrix. In our case, 

and u(t)  = 0 for t > 0. As a result, the integral term in the solution of x is identically zero. 

To determine eAt, we may use a few different methods. However in this case, we will use the 
method based on the Cayley-Hamilton theorem. In this method, we observe that eAt may be 
described by a linear combination of for k = 0, . . . , (n - I ) ,  SO that  

where I is the appropriately dimensioned identity matrix, n is the dimension of the system, and 
0 0 .  . . . , an-1 are scalars. The scalars are determined by the application of the eigenvectors to 
the above equation that  results in the set of equations 

where XI, . . . , A, are the eigenvalues. To be able to solve for all the unknown variables cro, . . . cu,,: 
we need to have n linearly independent, equations. However, when an eigenvalue is repeated, 
me get the same equation more than once. In such a case, we use the partial derivatives of the 
equations for the repeated eigenvalue with respect to  the eigenvalue, or 

for k = 1, . . . , r, where r is the number of repetitions of the eigenvalue X i .  In our case, n = 2, 
so 

eAt = aoI + alA; 

and the eigenvalues are calculated from 

det(XI - A) = det [i -:I = x 2 + 4 = 0 ,  
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or = h j 2 .  The set of equations becomes 

In our case, 

e(j21t = a0 + a l ( j2 ) ,  

e(-j21t = a0 + al (- j2). 

Solving the above set of equations simultaneously gives 

ao = (ejzt + e-jzt) /2 = cos(2t), 

a1 = (22t - e-jzt)/(4j) = (112) sin(2t). 

As a result, 

Since u(t)  = 0 for t 2 0, we have 

y(t) = -3cos(2t) + 7sin(2t) for t > 0. 

(b) Determine the transfer function of the system. 

Solution: The transfer function of a control system described in the state-state representatioll 

Therefore, 

1 1 4 
= ( - 2  s2 + 4  s + 2 1  [- ; ]+l=(-&-J[4]+1=- ~ ~ + 4  + 1 

In other words, the transfer function is F ( s )  = (s2 + 8)/(s2 + 4). 
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5. A control system is described in state-space representation, such that 

where u, x, and y are the input, the state, and the output variables, respectively. For the following 
'4, B. C, and D matrices. determine whether the system is asymptotically stable, marginally stable. or 
unstable: and whether it is bounded-input-bounded-output stable or not. Justify your answer. 

Solution: In order to determine the stability of the system, we first need to determine its eigenvalues 
or poles. Since in this case, the state matrix A is diagonal, we observe the eigenvalues directly 
from the diagonal elements as XI = 0, X2 = 0, and Xg = -1. The eigenvalue X3 has a negative 
real part, and it would generate an asymptotically stable response. The eigenvalues X1 and X2 
are both zero, and each would generate a constant response individually. However, if they are 
cascaded, a constant response generated by the first one would result in a ramp response by the 
second one. In this case, since the state matrix A is diagonal, the two zero-valued eigenvalues 
don't affect each other, or they are not cascaded. Therefore, each of the eigenvalues X1 and X2 
would generate a constant response resulting in a marginally stable response. Since there are 
no more eigenvalues, we conclude that the system is marginally stable. 

I11 order to determine the bounded-input-bounded-output stability of the system, we may de- 
termine the transfer matrix and observe the poles of the system after all the reductions. The 
transfer matrix of the system is given by 

where L [(.)I (s) is the Laplace transform, and I is the appropriately dimensioned identity matrix. 
In our case. 

We realize that the transfer matrix elements are all zero, therefore the system is bounded-input- 
bounded-output stable. 

In summary, the system is marginally stable, and it is bounded-input-bounded-output stable. 
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Solution: Since the state matrix A is upper diagonal, we observe the eigenvalues directly from the 
diagonal elements as X 1  = 0, X 2  = 0, and X g  = -1. The eigenvalue X3 has a negative real part. 
and it would generate an asymptotically stable response. The eigenvalues XI and X2 are both 
zero, and each would generate a constant response individually. However, if they are cascaded. 
a constant response generated by the first one would result in a ramp response by the second 
one. In this case, since the state matrix A  is in jordan form, the two zero-valued eigenvalues are 
cascaded, and they affect each other. Therefore, the state corresponding to X2 ~vould generate a 

constant response, and the state corresponding to X 1  would then generate a ramp response. As 
a result, we conclude that the system is unstable. 

In order to determine the bounded-input-bounded-output stability of the system. we may de- 
termine the transfer matrix and observe the poles of the system after all the reductions. The 
transfer matrix of the system is given by 

where L [ ( ) I  ( s )  is the Laplace transform. and I  is the appropriately dimensioned identity matrix. 
One method to determine the inverse of (sI  - A) is to use row operations on the augmented 
matrix [ (sI  - A) I  ] to generate [ I  ( s I  - A)-' 1 .  

Therefore, 
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We realize that only one pole of the system is visible in the transfer function; and it has a 
negative real part. Therefore, the system is unstable, and it is bounded-input-bounded-output 
stable. 


