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1. The block diagram of a control system is given below 

Obtain a state-space representation of the system without any block-diagram reduction. (20pts) 

2. The state-space equations of a control system are given by 

where u, x ,  and y are the input, the state, and the output variables, respectively. 

T 
(a) Determine y(t) for t > 0; when x(0) = [ 0 0 ] , and u(t) = e-t for t 2 0. Show all your work. 

(15pts) 

(b) Determine the transfer function of the system. (10pts) 

3. A time-varying linear control system is described by 

where u and x are the input and the state variables, respectively. Determine x( t )  for t 2 0, when 
T 

x(0) = [ 2 -3 ] , and u(t) = 0 for t 2 0. (25pts) 



4. A control system is described in state-space representation, such that 

where u, x, and y are the input, the state, and the output variables, respectively. For the following 
A, B, C ,  and D matrices, determine whether the system is asymptotically stable, marginally stable, or 
unstable; and whether it is bounded-input-boundcd-output stable or not. Justify your answer. 
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1. The block diagram of a control system is given below. 

Obtain a state-space representation of the system without any block-diagram reduction. 

Solution: In order to obtain a state-space representation without any block-diagram reduction or with- 
out determining the closed-loop transfer function, we need to realize the individual blocks and use 
the complete block diagram to generate the state-space equations. 

(a) The feedforward gain block. 

(c) The feedback gain block. 

(b) Controller realization form. 

(d) Controller realization form. 

The connected and "expanded" block diagram is shown below. 
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After assigning the state variables as shown in the figure, we obtain 

x, = x,, 

x2 = -x2 + e, 

and 

We also have 
e = u - (x3 + x3) = -XI  - x2 - 23 + u. 

After substituting the expression for e into the original set, we obtain the state-space representation 

In this case, the observer realization form gives the same state-space representation. 

2. The state-space equations of a control system are given by 

where u, x ,  and y are the input, the state, and the output variables, respectively. 

(a) Determine y(t) for t 2 0; when x(0) = [ 0 0 I T ,  and ~ ( t )  = e-' for t 2 0. Show all your work. 

Solution: The general solution to the state-space representation of a system described by 

is obtained from 
r t  

where 

eAt = [ ( S I  - A)-l](t) .  

Here, I is the appropriately dimensioned identity matrix. In our case, 
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T x(0) = [ 0 0 ] , and u(t) = 1 for t 2 0. As a result, the initial-condition term in the solution 
of x is identically zero. So, 

s+2 ] ( t  - r)) e-" d r  = 
(2t;' [ (s+l;(s+4) ] (t - r, + ';' [ (s+l)(s+4) 

t 

= Jot (Lhl [ (S+;;R4) ] (t  - r)) e-' d r  = J o (L,' [$ - 31 (t - r)) e-' d r  

Or, 
y(t) = ((5/3)t - (2/9))e-t + (2/9)e-4t for t 2 0. 

(b) Determine the transfer function of the system. 

Solution: The transfer function of a control system described in the state-state representation 

x( t )  = Ax(t) + Bu( t ) ,  

y( t )  = Cx(t)  + Du( t ) ,  
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where in our case 

Here, I is the appropriately dimensioned identity matrix. 

Therefore, 

In other words, the transfer function is F ( s )  = ( s  + 6 )  / (s2 + 5s + 4)  = (s + 6 )  / ( ( s  + I) (s  + 4)) .  

3. A time-varying linear control system is described by 

where u and x are the input and the state variables, respectively. Determine x ( t )  for t  > 0, when 
T 

x(0) = [ 2  -31 , and u(t)  = 0 f o r t  >. 0. 

Solution: Since the given system is time varying, the solution is given by 

where @ is the state-transition matrix, and B is the input matrix. When the state matrix A and its 
integral commute, or when the commutativity condition A(tl)A(t2) = A ( t ~ ) A ( t l )  for all tl and t2 is 
satisfied; the state-transition matrix is given by 

In our case, 

and the state-transition matrix is exponential of the integral of the state matrix. However, direct 
computation of the exponential is rather involved and a simpler approach is preferable. 
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Diagonalization of A(t)  
One possible approach is to diagonalize the state matrix. If there exists a matrix T ,  such that 

T - ~ A ( ~ ) T  = ~ ( t )  

is diagonal, then 

To diagonalize the state matrix, we first need to find its eigenvalues from the characteristic 
equation 

det (XI - A(t)) = 0, 

X + 6t + 5 sin(t) 3t + 3 sin(t) 
det [ I = X 2 +  (t-sin(t))X+tsin(t) = (X+t) (A-sin(t)) = 0. 

-lOt - 10 sin(t) X - 5t - 6 sin(t) 

So, the eigenvalues are X1 = -t and X2 = sin(t). 

For X1 = -t, we have 

Letting vl, = 3, we get v l  = [ 3 -5 l T  

Similarly, for X2 = sin(t), we have 

T 
Letting v2, = 2, we get v2 = [ -1 21 . 

Therefore, 

diagonalizes the state matrix, such that 

First taking the integral of AA, we get 
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second taking the exponential of the integral, we get 

and finally, 

T 
Since x(0) = [ 2 -3 ] , and u(t) = 0 for t 2 0; we have x(t)  = @(t, O)x(O), or 

x( t )  = I for t 2 0. 

Using the Cayley-Hamilton's theorem 
Another possible approach is to use the Cayley-Hamilton's theorem to determine @(t, to) from 
the eigenvalues of A(t). In this method, we observe that @(t,to) may be described by a linear 
combination of ~ ~ ( t )  for I; = 0, . . . , (n - I), so that 

where I is the appropriately dimensioned identity matrix, n is the dimension of the system, and 
ao(t), . . . , anPl ( t )  are functions of time. The scalars are determined by the application of the 
eigenvectors to the above equation that results in the set of equations 

,('of di) = ao(t) I + al (t)An(t) + . . - + a,-1 (t)X;-l ( t) ,  

where XI (t), . . . , A, (t) are the eigenvalues. Since we have already determined the eigenvalues of 
A(t) as Xl(t) = -t and X2( t )  = sin(t), and n = 2; the set of equations becomes 

,(So"(-.) d r )  = + al(t)(-t)  

e(J:(sin(r)) dr) = ao(t)  + al (t) (sin(t)), 

e-"l2 = a. (t) - tal (t) 
,l-cos(t) - - ao( t )  + sin(t)al(t). 
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Solving the above set of equations simultaneously gives 

al (t) = (e'-cOs(t) - et212) / (t + sin@)) 

As a result: 

and 

which is the same result as before. 

4. A control system is described in state-space representation, such that 

where u, x ,  and y are the input, the state, and the output variables, respectively. For the following 
A, B, C, and D matrices, determine whether the system is asymptotically stable, marginally stable, or 
unstable; and whether it is bounded-input-bounded-output stable or not. Justify your answer. 

Solution: In order to determine the stability of the system, we first need to  determine its eigenvalues 
and poles. Since in this case, the state matrix A is in modal form, we observe the eigenvalues 
directly from the block-diagonal matrices 

From 

det(sI  - A1) = det(s1- Az) = det 2 [ - s  :] = S  
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we get XlI2 = X3,4 = hj. The eigenvalues are on the imaginary axis and they are repeated. 
If they are cascaded, a sinusoidal response generated by the first set would result in a ramp 
envelope by the second one. In this case, since the state matrix A is block-diagonal, the two 
imaginary-valued eigenvalues don't affect each other, or they are not cascaded. Therefore, each 
set of the eigenvalues and X3,4 would generate a sinusoidal response resulting in a marginally 
stable response. Since there are no more eigenvalues, we conclude that the system is marginally 
stable. 

In order to  determine the bounded-input-bounded-output stability of the system, we may de- 
termine the transfer function and observe the poles of the system after all the reductions. The 
transfer function of the system is given by 

where L, [ ( - ) ] ( s )  is the laplace transform, and I is the appropriately dimensioned identity matrix. 
In our case, 

We realize that a complex pair on the imaginary axis are visible in the transfer function. Since the 
complex pair on the imaginary axis would generate a sinusoidal response with a ramp envelope 
for a sinusoidal input of the same frequency, the system is not bounded-input-bounded-output 
stable. 

In summary, the system is marginally stable, and it is not bounded-input-bounded-output stable. 
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Solution: In this case, the state matrix A is not completely in modal form, but it is in upper-block- 
triangular form. As a result, we still can observe the eigenvalues directly from the block-matrices 
on the diagonal 

From 

det(sI  - A1) = det(sI  - A2) = det 
-1 s 

we get Xl ,2  = X3,4 = Aj. The eigenvalues are on the imaginary axis and they are repeated. 
If they are cascaded, a sinusoidal response generated by the first set would result in a ramp 
envelope by the second one. To determine whether the system can be diagonalized or will be in 
jordan form, we need to check the rank condition. 

rank(A - XI) A,j = rank 0 0 -A -1 

The rank drop is two for the twice-repeated eigenvalue = j. As a result, we can obtain two 
linearly independent eigenvectors for this eigenvalue, and the system can be diagonalized. The 
eigenvalues on the imaginary axis are not cascaded, and the system is marginally stable. 

In order to determine the bounded-input-bounded-output stability of the system, we may de- 
termine the transfer function and observe the poles of the system after all the reductions. The 
transfer function of the system is given by 

where C [(.)](s) is the laplace transform, and I is the appropriately dimensioned identity matrix. 
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In our case, 

C(SI - A ) - ~ B  + D 
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We realize that a complex pair on the imaginary axis are visible in the transfer function. Since the 
complex pair on the imaginary axis would generate a sinusoidal response with a ramp envelope 
for a sinusoidal input of the same frequency, the system is not bounded-input-bounded-output 
stable. 

In summary, the system is marginally stable, and it is not bounded-input-bounded-output stable. 

Solution: In this case, the state matrix A is not completely in modal form, but it is in upper-block- 
triangular form. As a result, we still can observe the eigenvalues directly from the block-matrices 
on the diagonal 

F+om 

det(sI  - A1) = det(sI - A2) = det 

we get X1,2 = X3,,4 = & j .  The eigenvalues are on the imaginary axis and they are repeated. 
If they are cascaded, a sinusoidal response generated by the first set would result in a ramp 
envelope by the second one. To determine whether the system can be diagonalized or will be in 
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jordan form, we need to check the rank condition. 

[ - A  -1 0 0 1  
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The rank drop is only one for the repeated eigenvalue = j. As a result, we can only obtain 
one eigenvector for this eigenvalue, and the system cannot be diagonalized. In jordan form, the 
eigenvalues on the imaginary axis are cascaded, and the system is unstable 

In order to determine the bounded-input-bounded-output stability of the system, we may de- 
termine the transfer function and observe the poles of the system after all the reductions. The 
transfer function of the system is given by 

L [ y ] ( s )  = ( ~ ( s l -  A)-'B + D )  L [ u ] ( s )  

where L [ c ) ] ( s )  is the laplace transform, and I is the appropriately dimensioned identity matrix. 
In our case, 

C ( S I  - A ) - ~ B  + D 

= 0. 

The transfer function is zero, and the system is bounded-input-bounded-output stable. 

In summary, the system is unstable, and it is bounded-input-bounded-output stable. 


