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1. Find the extremal of the functional 

with x(0) = 0, x(1) = 114, and 
P 1 

Solution: The extremal to the cost function 

with the integral constraint 

is the solution to the Euler-Lagrange's equation 

d d (m, - ,m,) + X(A, - -A,) = 0, 
dt  

for a constant X provided that the extremal exists and it is not the estremal of K(x7  x) as well. I11 
our case, 

d d 
(0 - - ( 2 i ) )  + X (1 - -(o)) = 0, 

dt d t  

The solution to  the above differential equation is 

for some constants cl and cp.  We need to determine the unknown constants from the boundary 
conditions. At t = 0, x(0) = 0, so 

or cl = (1 - X)/4. In other words, 
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We need to determine the constant X from the additional constraint, where 

1 
K ( r )  = 1 x d t  = l ((X/4)t2 + (1 - A) /&)  dt  

or X = -21. Therefore, the optimal solution is 

x ( t )  = -(21/4)t2 + (11/2)t for 0 5 t I 1. 

2. Consider the cost function 

112 116 
J ( x .  u) = xT(*) [ ] s(T) + iT ( X J  [ 3f 3y2 ] x + (112) u2) di. 

116 

and a continuous-time linear control-system described by 

where u and x are the control and the state variables, respectively. 

(a) Obtain the optimal feedback control that minimizes the cost function J for T = 1. 

Solution: Since the finite-time cost function is quadratic in the state and the input variables, the 
optimal control can be expressed in state-feedback form, such that 

where R is from the cost function 

and P is the solution to the riccati equation 

with the end condition 
P ( t f )  = S 

for the control system described by 

In our case, we have 

Since P is symmetric, let - - 
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Substituting all these matrices into the riccati equation, we get 

We get 

PI = 2pl +pI2  - 3, 

and 

~3 = - 2 ~ 2  f 2p3 + ~ 2 ~  - 3 

from the (1, I) ,  (1,2) (or (2, I)) ,  and (2,2) terms of the matrix equation. respectively. From the  
equation in the (1,l) term, we have 

with pl(1) = 1. Solving the above differential equation, we get 

Substituting p l ( l )  = 1, we get c = 0, or 

So, pl(t)  = 1 for 0 5 t 5 1. 

Similarly, from the equation in the (1,2) (or (2 , l ) )  term, we have 

with p2(1) = 1/3. Solving the above differential equation, we get 
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Substituting p2( l )  = 113, we get d = 0. So, p2(t) = 113 for 0 5 t 5 1. 

Finally, from the equation in the (2,2) term, we have 

p3 = -2p2 +2p3 +P22 - 3 = 2p3 - 3219 

with p3(l) = 2. Solving the above differential equation, we get 

p3(t) = e e" + 1619. 

Substituting ps(l)  = 2, we get e = (2/9)ed2. So, 

~ 3 ( t )  = (219) (8 + e2(t-l))  

for 0 5 t 5 1. As a result, 

for 0 < t 5 1. Therefore, the optimal control is 

u(t) = - [ 1 1/3 ] x(t) = - [ 1 113 ] [ x'(t) ] for 0 < t < 1. 
x2 (t) 

(b) Determine the optimal cost J* for an arbitrary initial state, when T = 1. 

Solution: For the finite-time quadratic cost function with the state-feedback control, the optinla1 
cost 

1 
J* = -xT(0)~(O)x(O), 2 

where x is the state variable, and P is the solution to the riccati equation. In our case, 

for 0 5 t 5 1. So, 

and for z(0)  = [ x1 (0) x2(0) ] T, the optimal cost 
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3. Find the optimal control that will minimize the cost function 

T 
and transfer the initial state x(0) = [ -4 0 l T  to the final state x(T) = [ 4 0 ] for the control system 
described by 

T 
where u and x = [ x1 x2 ] are the control and the state variables, respectively, provided that l,u(t)l 5 1 
for t 2 0. 

Solution: In this problem, the finite-time cost function is quadratic in the state variables, but the input 
variable is missing. As a result, we need to  use the Pontryagin's optimality condition to deternline 
the optimal control. 

The Hamiltonian for a system described by 

with the cost function 
rT 

is given by 
H ( ~ , u ,  X,X)  = +(t, X ,U)  + X ~ ( A X  + BU), 

where u and x are the input and the state variables, respectively, and X is the langrange multiplier. 
In our case, 

~ ( t ,  u, x, A) = (1/2)x12 + ( 1 / 2 ) ~ 2 ~  + X I X I  + X ~ U ,  

where X = [ XI  X 2 I T  

The optimality conditions in terms of the Hamiltonian are 

and 

where (.)* designates the optimal values. From the last optimality condition, we get 
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In order to determine the optimal trajectory, we need to analyze the response when u = f1. For 
u = *1, we get 

x, (t) = 2 2  

i 2 ( t )  = kl, 

21 (t) = kt2/2 + c1t + C2 

x2(t) = k t  + C1,  

for t 3 0 and for some constants cl and c2. To get a state trajectory, we eliminate the time variable 
by solving for t .  From the second equation, we have t = f (a2 - cl) ,  and 

Therefore, the state trajectories are parabolas with vertices at  (c3, 0). To see the direction of motion 
on the parabolas, we may check the extreme values of t as shown in the followillg table. 

-8 t 
u = -1 case. u = 1 case. 

T 
Since our destination is x (T)  = [ 4  01 , the last switch is to be to  the curves that go through 
(4,O) , specifically 

xl = -(1/2)22~ + 4, when u = -1; 
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and 
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xl = ( 1 1 2 ) ~ ~ ~  + 4 ,  when u = 1. 

To determine the control signal for each region, we choose the trajectories that intersect the above 
curves with different values of u as shown in the following figures. The first figure sho~vs the region 
in the state trajectory, where the optimal control starts with u = -1: and when xl  = ( 1 1 2 ) ~ ~ ~  + 4. 
that is shown by the thicker line in the first figure, the  control is switched to u = 1. The second 
figure shows the region, where the optimal control starts with u = 1; and when x l  = - ( 1 / 2 ) ~ 2 ~  + 4. 
that is shown by the thicker line in the second figure, the control is switched to u = -1. 

- I /  8 

( a )  u  = -1 to u = 1 case. (b )  u = 1 t o u =  - 1  case. 

There is also the consideration of singularity intervals. We observe that the singularity intervals 
occur when X2 = 0 for a time period. In that time period, X2 = 0, and as a result XI = -22. 111 
addition, we have 

since the final time is free. In either case, since lul 5 1, we get 1x1 1 I 0 and 1x2 1 I 0. Since those 
T T regions of state variables are not encountered to go from x(0) = [ -4 0 ] to x ( T )  = [ 4 0 ] : in 

our region of operation, we don't have a singular interval during our trajectory. 

Starting at  (-4,0), we first get on the trajectory x l  = (1/2)xZ2 + c3 with control u = 1; then switch 
to the trajectory X I  = - ( 1 / 2 ) ~ ~ ~  + 4 with control u = -1 to reach the final destination (4.0). 
Solving for the constant c3, such that the trajectory x l  = (1/2)xZ2 + ca goes through the point 
(-4,O); we get x l  = ( 1 1 2 ) ~ ~ ~  - 4. The intersection points of the trajectories x l  = (1/2)xZ2 - 4 and 
xl  = -(1/2)xz2 + 4 are (0, f 2 4 ) .  In other words, the optimal switching solution is 


