Copyright (c) 2006 by Levent Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the written permission of the copyright holder(s).

1. Find the extremal of the functional

$$
J(x)=\int_{0}^{1} \dot{x}^{2} \mathrm{~d} t
$$

with $x(0)=0, x(1)=1 / 4$, and

$$
K(x)=\int_{0}^{1} x \mathrm{~d} t=1 .
$$

Solution: The extremal to the cost function

$$
J(x, \dot{x})=\int_{t_{0}}^{t_{f}} \Phi(t, x, \dot{x}) \mathrm{d} t=\int_{0}^{1} \dot{x}^{2} \mathrm{~d} t
$$

with the integral constraint

$$
K(x, \dot{x})=\int_{t_{0}}^{t_{f}} \Lambda(t, x, \dot{x}) \mathrm{d} t=\int_{0}^{1} x \mathrm{~d} t=1
$$

is the solution to the Euler-Lagrange's equation

$$
\left(\Phi_{x}-\frac{\mathrm{d}}{\mathrm{~d} t} \Phi_{\dot{x}}\right)+\lambda\left(\Lambda_{x}-\frac{\mathrm{d}}{\mathrm{~d} t} \Lambda_{\dot{x}}\right)=0
$$

for a constant λ provided that the extremal exists and it is not the extremal of $K(x, \dot{x})$ as well. In our case,

$$
\left(0-\frac{\mathrm{d}}{\mathrm{~d} t}(2 \dot{x})\right)+\lambda\left(1-\frac{\mathrm{d}}{\mathrm{~d} t}(0)\right)=0
$$

or

$$
-2 \ddot{x}+\lambda=0 .
$$

The solution to the above differential equation is

$$
x(t)=(\lambda / 4) t^{2}+c_{1} t+c_{2},
$$

for some constants c_{1} and c_{2}. We need to determine the unknown constants from the boundary conditions. At $t=0, x(0)=0$, so

$$
\left[(\lambda / 4) t^{2}+c_{1} t+c_{2}\right]_{t=0}=0
$$

or $c_{2}=0$. At $t=1, x(1)=1 / 4$, so

$$
\left[(\lambda / 4) t^{2}+c_{1} t+c_{2}\right]_{t=1}=0
$$

or $c_{1}=(1-\lambda) / 4$. In other words,

$$
x(t)=(\lambda / 4) t^{2}+(1-\lambda) / 4 t .
$$

We need to determine the constant λ from the additional constraint, where

$$
\begin{aligned}
K(x) & =\int_{0}^{1} x \mathrm{~d} t=\int_{0}^{1}\left((\lambda / 4) t^{2}+(1-\lambda) / 4 t\right) \mathrm{d} t \\
& =\left[(\lambda / 12) t^{3}+(1-\lambda) / 8 t^{2}\right]_{t=0}^{t=1}=[(\lambda / 12)+(1-\lambda) / 8]-[0]=1,
\end{aligned}
$$

or $\lambda=-21$. Therefore, the optimal solution is

$$
x(t)=-(21 / 4) t^{2}+(11 / 2) t \text { for } 0 \leq t \leq 1 .
$$

2. Consider the cost function

$$
J(\boldsymbol{x}, u)=\boldsymbol{x}^{T}(T)\left[\begin{array}{cc}
1 / 2 & 1 / 6 \\
1 / 6 & 1
\end{array}\right] \boldsymbol{x}(T)+\int_{0}^{T}\left(\boldsymbol{x}^{T}\left[\begin{array}{cc}
3 / 2 & 0 \\
0 & 3 / 2
\end{array}\right] \boldsymbol{x}+(1 / 2) u^{2}\right) \mathrm{d} t .
$$

and a continuous-time linear control-system described by

$$
\dot{x}(t)=\left[\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right] \boldsymbol{x}(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t),
$$

where u and x are the control and the state variables, respectively.
(a) Obtain the optimal feedback control that minimizes the cost function J for $T=1$.

Solution: Since the finite-time cost function is quadratic in the state and the input variables, the optimal control can be expressed in state-feedback form, such that

$$
u(t)=-R^{-1} B^{T} P(t) x(t)
$$

where R is from the cost function

$$
J=\frac{1}{2} x^{T}\left(t_{f}\right) S x\left(t_{f}\right)+\int_{0}^{t_{f}} \frac{1}{2}\left(x^{T}(t) Q x(t)+u^{T}(t) R u(t)\right) \mathrm{d} t,
$$

and P is the solution to the riccati equation

$$
\dot{P}(t)=-A^{T} P(t)-P(t) A+P(t) B R^{-1} B^{T} P(t)-Q
$$

with the end condition

$$
P\left(t_{f}\right)=S
$$

for the control system described by

$$
\dot{\boldsymbol{x}}(t)=A \boldsymbol{x}(t)+B \boldsymbol{u}(t) .
$$

In our case, we have

$$
A=\left[\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad Q=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right], \quad R=1, \quad \text { and } S=\left[\begin{array}{cc}
1 & 1 / 3 \\
1 / 3 & 2
\end{array}\right] .
$$

Since P is symmetric, let

$$
P=\left[\begin{array}{ll}
p_{1} & p_{2} \\
p_{2} & p_{3}
\end{array}\right] .
$$

Substituting all these matrices into the riccati equation, we get

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\dot{p}_{1} & \dot{p}_{2} \\
\dot{p}_{2} & \dot{p}_{3}
\end{array}\right]=-\left[\begin{array}{ll}
p_{1} & p_{2} \\
p_{2} & p_{3}
\end{array}\right]\left[\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right]-\left[\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right]^{T}\left[\begin{array}{ll}
p_{1} & p_{2} \\
p_{2} & p_{3}
\end{array}\right] } \\
&++\left[\begin{array}{ll}
p_{1} & p_{2} \\
p_{2} & p_{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right](1)^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{T}\left[\begin{array}{ll}
p_{1} & p_{2} \\
p_{2} & p_{3}
\end{array}\right]-\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right], \\
& {\left[\begin{array}{ll}
\dot{p}_{1} & \dot{p}_{2} \\
\dot{p}_{2} & \dot{p}_{3}
\end{array}\right]=\left[\begin{array}{ll}
p_{1} & -p_{1}+p_{2} \\
p_{2} & -p_{2}+p_{3}
\end{array}\right]+\left[\begin{array}{cc}
p_{1} & p_{2} \\
-p_{1}+p_{2} & -p_{2}+p_{3}
\end{array}\right] } \\
&+\left[\begin{array}{ll}
p_{1} & 0 \\
p_{2} & 0
\end{array}\right]\left[\begin{array}{ll}
p_{1} & p_{2} \\
p_{2} & p_{3}
\end{array}\right]-\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] .
\end{aligned}
$$

We get

$$
\begin{gathered}
\dot{p}_{1}=2 p_{1}+p_{1}^{2}-3, \\
\dot{p}_{2}=-p_{1}+2 p_{2}+p_{1} p_{2},
\end{gathered}
$$

and

$$
\dot{p}_{3}=-2 p_{2}+2 p_{3}+p_{2}^{2}-3
$$

from the $(1,1),(1,2)$ (or $(2,1))$, and $(2,2)$ terms of the matrix equation, respectively. From the equation in the $(1,1)$ term, we have

$$
\dot{p}_{1}=2 p_{1}+p_{1}^{2}-3=\left(p_{1}+3\right)\left(p_{1}-1\right)
$$

with $p_{1}(1)=1$. Solving the above differential equation, we get

$$
\begin{gathered}
\int\left(\frac{1}{\left(p_{1}+3\right)\left(p_{1}-1\right)}\right) \mathrm{d} p_{1}=\int \mathrm{d} t \\
\int\left(\frac{-1 / 4}{p_{1}+3}-\frac{1 / 4}{p_{1}-1}\right) \mathrm{d} p_{1}=t+a \\
\ln \left(\frac{p_{1}-1}{p_{1}+3}\right)=4 t+b
\end{gathered}
$$

or

$$
\frac{p_{1}-1}{p_{1}+3}=c e^{4 t} .
$$

Substituting $p_{1}(1)=1$, we get $c=0$, or

$$
\frac{p_{1}-1}{p_{1}+3}=0
$$

So, $p_{1}(t)=1$ for $0 \leq t \leq 1$.
Similarly, from the equation in the $(1,2)$ (or $(2,1))$ term, we have

$$
\dot{p}_{2}=-p_{1}+2 p_{2}+p_{1} p_{2}=3 p_{2}-1
$$

with $p_{2}(1)=1 / 3$. Solving the above differential equation, we get

$$
p_{2}(t)=d e^{3 t}+1 / 3 .
$$

Substituting $p_{2}(1)=1 / 3$, we get $d=0$. So, $p_{2}(t)=1 / 3$ for $0 \leq t \leq 1$.
Finally, from the equation in the $(2,2)$ term, we have

$$
\dot{p}_{3}=-2 p_{2}+2 p_{3}+p_{2}^{2}-3=2 p_{3}-32 / 9
$$

with $p_{3}(1)=2$. Solving the above differential equation, we get

$$
p_{3}(t)=e e^{2 t}+16 / 9 .
$$

Substituting $p_{3}(1)=2$, we get $e=(2 / 9) e^{-2}$. So,

$$
p_{3}(t)=(2 / 9)\left(8+e^{2(t-1)}\right)
$$

for $0 \leq t \leq 1$. As a result,

$$
P(t)=\left[\begin{array}{cc}
1 & 1 / 3 \\
1 / 3 & (2 / 9)\left(8+e^{2(t-1)}\right)
\end{array}\right]
$$

for $0 \leq t \leq 1$. Therefore, the optimal control is

$$
u(t)=-R^{-1} B^{T} P x(t)=-(1)^{-1}\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 / 3 \\
1 / 3 & (2 / 9)\left(8+e^{2(t-1)}\right)
\end{array}\right] x(t),
$$

or

$$
u(t)=-\left[\begin{array}{ll}
1 & 1 / 3
\end{array}\right] \boldsymbol{x}(t)=-\left[\begin{array}{ll}
1 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] \text { for } 0 \leq t \leq 1 .
$$

(b) Determine the optimal cost J^{*} for an arbitrary initial state, when $T=1$.

Solution: For the finite-time quadratic cost function with the state-feedback control, the optimal cost

$$
J^{*}=\frac{1}{2} x^{T}(0) P(0) x(0),
$$

where x is the state variable, and P is the solution to the riccati equation. In our case,

$$
P(t)=\left[\begin{array}{cc}
1 & 1 / 3 \\
1 / 3 & (2 / 9)\left(8+e^{2(t-1)}\right)
\end{array}\right]
$$

for $0 \leq t \leq 1$. So,

$$
P(0)=\left[\begin{array}{cc}
1 & 1 / 3 \\
1 / 3 & (2 / 9)\left(8+e^{-2}\right)
\end{array}\right]=\left[\begin{array}{cc}
1 & 0.3333 \\
0.3333 & 1.8079
\end{array}\right]
$$

and for $x(0)=\left[\begin{array}{ll}x_{1}(0) & x_{2}(0)\end{array}\right]^{T}$, the optimal cost
$J^{*}=\left[\begin{array}{ll}x_{1}(0) & x_{2}(0)\end{array}\right]\left[\begin{array}{cc}1 & 0.3333 \\ 0.3333 & 1.8079\end{array}\right]\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=x_{1}{ }^{2}(0)+0.6667 x_{1}(0) x_{2}(0)+1.8079 x_{2}{ }^{2}(0)$.
3. Find the optimal control that will minimize the cost function

$$
J\left(x_{1}, x_{2}\right)=\int_{0}^{T}(1 / 2)\left(x_{1}^{2}+x_{2}^{2}\right) \mathrm{d} t
$$

and transfer the initial state $\boldsymbol{x}(0)=\left[\begin{array}{ll}-4 & 0\end{array}\right]^{T}$ to the final state $\boldsymbol{x}(T)=\left[\begin{array}{ll}4 & 0\end{array}\right]^{T}$ for the control system described by

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{2}(t) \\
& \dot{x}_{2}(t)=u(t),
\end{aligned}
$$

where u and $x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$ are the control and the state variables, respectively, provided that $|u(t)| \leq 1$ for $t \geq 0$.

Solution: In this problem, the finite-time cost function is quadratic in the state variables, but the input variable is missing. As a result, we need to use the Pontryagin's optimality condition to determine the optimal control.

The Hamiltonian for a system described by

$$
\dot{x}(t)=A \boldsymbol{x}(t)+B u(t) .
$$

with the cost function

$$
J(x, u)=\int_{0}^{T} \phi(t, x, u) \mathrm{d} t
$$

is given by

$$
H(t, u, x, \lambda)=\phi(t, x, u)+\lambda^{T}(A x+B u)
$$

where \boldsymbol{u} and \boldsymbol{x} are the input and the state variables, respectively, and $\boldsymbol{\lambda}$ is the langrange multiplier. In our case,

$$
H(t, \boldsymbol{u}, \boldsymbol{x}, \lambda)=(1 / 2) x_{1}^{2}+(1 / 2) x_{2}^{2}+\lambda_{1} x_{1}+\lambda_{2} u,
$$

where $\boldsymbol{\lambda}=\left[\begin{array}{ll}\lambda_{1} & \lambda_{2}\end{array}\right]^{T}$.
The optimality conditions in terms of the Hamiltonian are

$$
\begin{array}{cl}
\dot{x}=H_{\lambda} ; & \dot{x}_{1}=x_{2}, \\
& \dot{x}_{2}=u ; \\
\dot{\lambda}=-H_{x} ; & \dot{\lambda}_{1}=-x_{1}, \\
& \dot{\lambda}_{2}=-x_{2}-\lambda_{1} ;
\end{array}
$$

and

$$
[H]_{\substack { u=u \\
\begin{subarray}{c}{u=x \\
\lambda=\lambda{ u = u \\
\begin{subarray} { c } { u = x \\
\lambda = \lambda } }\end{subarray}} \leq[H]_{\substack{x=x^{*} \\
\lambda=\lambda}} ; \begin{aligned}
& \\
& \\
& \\
& \text { or } \lambda_{2}^{*} u^{*} \leq \lambda_{2}^{*} u,
\end{aligned}
$$

where (.)* designates the optimal values. From the last optimality condition, we get

$$
u^{*}=-\operatorname{sgn}\left(\lambda_{2}\right)
$$

In order to determine the optimal trajectory, we need to analyze the response when $u= \pm 1$. For $u= \pm 1$, we get

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{2} \\
& \dot{x}_{2}(t)= \pm 1,
\end{aligned}
$$

or

$$
\begin{aligned}
& x_{1}(t)= \pm t^{2} / 2+c_{1} t+c_{2} \\
& x_{2}(t)= \pm t+c_{1},
\end{aligned}
$$

for $t \geq 0$ and for some constants c_{1} and c_{2}. To get a state trajectory, we eliminate the time variable by solving for t. From the second equation, we have $t= \pm\left(x_{2}-c_{1}\right)$, and

$$
\begin{aligned}
x_{1} & = \pm\left(x_{2}-c_{1}\right)^{2} / 2 \pm c_{1}\left(x_{2}-c_{1}\right)+c_{2} \\
& = \pm(1 / 2)\left(\left(x_{2}-c_{1}\right)^{2}+2 c_{1}\left(x_{2}-c_{1}\right)+c_{1}^{2}\right)+c_{3} \\
& = \pm(1 / 2)\left(\left(x_{2}-c_{1}\right)+c_{1}\right)^{2}+c_{3} \\
& = \pm(1 / 2) x_{2}{ }^{2}+c_{3}
\end{aligned}
$$

Therefore, the state trajectories are parabolas with vertices at $\left(c_{3}, 0\right)$. To see the direction of motion on the parabolas, we may check the extreme values of t as shown in the following table.

t	$\left(x_{1}, x_{2}\right)_{u=-1}$	$\left(x_{1}, x_{2}\right)_{u=+1}$
$-\infty$	$(-\infty,+\infty)$	$(+\infty,-\infty)$
$+\infty$	$(-\infty,-\infty)$	$(+\infty,+\infty)$

Since our destination is $x(T)=\left[\begin{array}{ll}4 & 0\end{array}\right]^{T}$, the last switch is to be to the curves that go through $(4,0)$, specifically

$$
x_{1}=-(1 / 2) x_{2}^{2}+4, \text { when } u=-1 ;
$$

and

$$
x_{1}=(1 / 2) x_{2}^{2}+4, \text { when } u=1
$$

To determine the control signal for each region, we choose the trajectories that intersect the above curves with different values of u as shown in the following figures. The first figure shows the region in the state trajectory, where the optimal control starts with $u=-1$; and when $x_{1}=(1 / 2) x_{2}{ }^{2}+4$. that is shown by the thicker line in the first figure, the control is switched to $u=1$. The second figure shows the region, where the optimal control starts with $u=1$; and when $x_{1}=-(1 / 2) x_{2}{ }^{2}+4$. that is shown by the thicker line in the second figure, the control is switched to $u=-1$.

(a) $u=-1$ to $u=1$ case.

(b) $u=1$ to $u=-1$ case.

There is also the consideration of singularity intervals. We observe that the singularity intervals occur when $\lambda_{2}=0$ for a time period. In that time period, $\dot{\lambda}_{2}=0$, and as a result $\lambda_{1}=-x_{2}$. In addition, we have

$$
\left.H^{*}\right|_{\substack{\lambda_{1}^{*}=-x_{2}^{*} \\ \lambda_{2}=0}}=\left[(1 / 2) x_{1}^{* 2}+(1 / 2) x_{2}^{* 2}+\lambda_{1}^{*} x_{2}^{*}+\lambda_{2}^{*} u^{*}\right]_{\substack{\lambda_{1}^{*}=-x_{2}^{*} \\ \lambda_{2}=0}}=(1 / 2)\left(x_{1}^{*}-x_{2}^{*}\right)\left(x_{1}^{*}+x_{2}^{*}\right)=0,
$$

since the final time is free. In either case, since $|u| \leq 1$, we get $\left|x_{1}\right| \leq 0$ and $\left|x_{2}\right| \leq 0$. Since those regions of state variables are not encountered to go from $x(0)=\left[\begin{array}{ll}-4 & 0\end{array}\right]^{T}$ to $\boldsymbol{x}(T)=\left[\begin{array}{ll}4 & 0\end{array}\right]^{T}$: in our region of operation, we don't have a singular interval during our trajectory.

Starting at $(-4,0)$, we first get on the trajectory $x_{1}=(1 / 2) x_{2}{ }^{2}+c_{3}$ with control $u=1$; then switch to the trajectory $x_{1}=-(1 / 2) x_{2}{ }^{2}+4$ with control $u=-1$ to reach the final destination (4.0). Solving for the constant c_{3}, such that the trajectory $x_{1}=(1 / 2) x_{2}{ }^{2}+c_{3}$ goes through the point $(-4,0)$; we get $x_{1}=(1 / 2) x_{2}^{2}-4$. The intersection points of the trajectories $x_{1}=(1 / 2) x_{2}^{2}-4$ and $x_{1}=-(1 / 2) x_{2}{ }^{2}+4$ are $(0, \pm 2 \sqrt{2})$. In other words, the optimal switching solution is

$$
\left\{\begin{array}{l}
x_{1}=-4 \\
x_{2}=0
\end{array}\right\} \xrightarrow{u=+1}\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=2 \sqrt{2}
\end{array}\right\} \xrightarrow{u=-1}\left\{\begin{array}{l}
x_{1}=4 \\
x_{2}=0
\end{array}\right\} .
$$

