Name: Dr. Grow

Spring 2001

This is an open book examination. Unless otherwise noted, y^i (1 \leq N) will denote rectangular cartesian coordinates in Euclidean N-space, $\mathbb{E}_{_{\mathrm{NI}}}$.

1.(12 pts.) In $\mathbb{E}_{\mathfrak{p}}$ consider the contravariant vector at the point

 $(y^1,y^2)=(4,3)$ with components $T^1=2$ and $T^2=5$ in y coordinates. (a) What are the covariant components T_1 and T_2 of the vector in y coordinates?

(b) Make the change of coordinates

$$x^{1} = y^{1}y^{2}$$

 $x^{2} = (y^{1})^{2} + (y^{2})^{2}$.

 $x^2 = (y^1)^2 + (y^2)^2$. What are the contravariant components of T in x coordinates?

2.(12 pts.) In V_4 , the tensor A_{rst} is skew-symmetric in the last pair of indices and satisfies the relation

$$A_{rst} + A_{str} + A_{trs} = 0$$
.

How many independent components does A have? Give reasons for your answer.

3.(12 pts.) In \mathbb{E}_3 recall that rectangular cartesian and spherical coordinates are related by

 $y^1 = r\sin(\phi)\cos(\theta), \quad y^2 = r\sin(\phi)\sin(\theta), \quad y^3 = r\cos(\phi).$ In spherical coordinates in E3, a vector field is such that the vector at each point points along the parametric line of heta, in the sense of hetaincreasing, and its magnitude is ksin(ϕ), where k is a constant. Find the contravariant and covariant components of this vector field.

4.(28 pts.) Consider the surface ${
m I\!R}$ in ${
m I\!E}_{
m S}$ given parametrically by

$$y^{1} = Rsin(x^{1})cos(x^{2}), \quad y^{2} = Rsin(x^{1})sin(x^{2}), \quad y^{3} = Rcos(x^{1})$$

where 0 \leq x 1 < $\pi,$ 0 \leq x 2 < $2\pi,$ and R is a positive constant. (a) Show that the metric tensor of \mathfrak{M} is

$$a_{11} = R^2$$
, $a_{22} = R^2 \sin^2(x^1)$, $a_{21} = a_{12} = 0$.

- (b) Compute the nonvanishing Christoffel symbols of the second kind
- (c) Write (BUT DO NOT SOLVE) the differential equations that define the geodesics in \mathfrak{M} .

(d) Compute the covariant curvature tensor for M.

5.(12 pts.) Let T and S be components of covariant and contravariant vector fields, respectively, in V_N . If T_rS^r is constant on a curve C in $\mathsf{V}_{_{\mathbf{N}}},$ and if $\mathsf{T}_{_{\mathbf{\Gamma}}}$ is propagated parallelly along $\mathsf{C},$ what can you conclude about S^r on C?

6.(12 pts.) Are the relations

(i)
$$T_{|rs} = T_{|sr}$$

(ii) $T_{r|sk} = T_{r|ks}$

true

(a) in curvilinear coordinates in a Euclidean space?

(b) in a general Riemannian space?

(Of course, reasons for your answers are required.)

7.(12 pts.) Explain in detail how you would determine if a surface in \mathbb{E}_3 , given parametrically by

$$y^1 = f^1(u^1, u^2), \quad y^2 = f^2(u^1, u^2), \quad y^3 = f^3(u^1, u^2),$$

is flat.