Mathematics 322

Midterm Exam

Name:

This is an open-book, open-notes examination which you will have 75 minutes to complete.

- 1.(20 pts.) Let M be an M-dimensional manifold and, for r and s in $\{1, \ldots, M\}$, define the components of (the constant field) δ on M by $\delta(r,s) = 0$ if $r \neq s$ and $\delta(s,s) = 1$. Show that δ is a tensor on M and identify its rank and contravariant and covariant types.
- 2.(20 pts.) If $T(i,j)dx^idx^j$ is an invariant on M, what can we conclude about the set of quantities T(i,j,)? Why?
- 3.(20 pts.) Let T be a covariant tensor of rank 2 (i.e. a bilinear realvalued function on VxV) over a vector space V with bases $\{e_1, \ldots, e_n\}$ and $\{f_1, \ldots, f_n\}$.
 - (a) If $f_{i} = a_{i}^{1}e_{i}$, derive the transformation law

$$T^{f}_{ij} = a^{k}_{i}a^{l}_{j}T^{e}_{kl}$$

for the components of T with respect to the bases f and e.

(b) If V is the tangent space at a point m of a manifold M, and the bases of V are the coordinate vector fields with respect to two systems

of coordinates
$$x^i$$
 and x'^i at m:
$$e_i = \frac{\partial}{\partial x^i} (m) \quad \text{and} \quad f_j = \frac{\partial}{\partial x'^j} (m),$$

then express the transformation law for the components of T that was obtained in part (a) of this problem.

- (c) Compare and contrast the equation from part (b) of this problem with equation 1.403 on page 13 of Synge and Schild.
- 4.(20 pts.) Let M be a three-dimensional manifold and let R be a rank four tensor on M.
 - (a) How many components does R have?
 - (b) Suppose that R obeys the symmetry relations $R_{iklm} = -R_{ikml} = -R_{kilm}.$

$$R_{iklm} = -R_{ikml} = -R_{kilm}$$

Show that R has 9 independent components.

(c) Show that the additional symmetry relation

$$R_{iklm} = R_{lmik}$$

further reduces the number of independent components to 6.

(d) Finally, if the components also satisfy the relation

$$R_{iklm} + R_{ilmk} + R_{imkl} = 0$$
,

how many independent components does R have? Why?

- 5.(20 pts.) Let M be a two-dimensional manifold.
- (a) If A^i and B^j are components of two contravariant vector fields A and B on \mathcal{M} , show that the four quantities

(*) A¹B

are the components of a contravariant tensor field of second rank on M.

- (b) Show that not every contravariant tensor field C of second rank on \mathcal{M} can be formed in accordance with (*) from two contravariant vector fields A and B on \mathcal{M} .
- (c) Nevertheless, show that the components of every second rank contravariant tensor field C on ${\it M}$ can be expressed as

$$C^{ij} = A^i B^j + E^i D^j$$

for two appropriately selected pairs A,B and E,D of contravariant vector fields on \mathcal{M} .