Real Analysis Comprehensive Examination

(Mathematics 415-416)

for Ms. Rotchana Chieochan
April 2012
This is a take-home examination consisting of six problems which are to be solved within 29 hours and returned to Dr. Grow.  All six problems are of equal value and a score of 70% or higher will be required in order to receive a passing grade.
I, the undersigned, attest that all work on this examination is mine alone, that I received aid from no animate sources, and that all inanimate sources I consulted have been duly noted by me on each problem solution.
___________________________________________________________

1.  Let 
[image: image1.wmf]f

 be a measurable real function defined on 
[image: image2.wmf](

)

,

-¥¥

 such that the function

[image: image3.wmf](

)

tx

teft

a


belongs to 
[image: image4.wmf](

)

1

,

L

-¥¥

 for all 
[image: image5.wmf]x

 in 
[image: image6.wmf](

)

1,1.

-

  Define


[image: image7.wmf](

)

(

)

tx

Fxeftdt

¥

-¥

=

ò


for 
[image: image8.wmf]11.

x

-<<

  Show that 
[image: image9.wmf]F

 is differentiable on 
[image: image10.wmf](

)

1,1

-

 and compute 
[image: image11.wmf](

)

.

Fx

¢


2.  Let 
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 be a measurable real function on 
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  Show that the following two statements are equivalent.

   (i)  There is an 
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   (ii)  There is a positive real number 
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3.  Let 
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 be a finite Borel measure on the real line and define
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  Show that 
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 is finite almost everywhere with respect to Lebesgue measure on the real line.

4.  Let 
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   (a)  Show that there exists 
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   (b)  Assuming the existence of a function 
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 with the properties of part (a), show that
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is a positive, finite measure on 
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   (c)  Show that if 
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5.  Let 
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respectively.

   (a)  Is 
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 absolutely continuous with respect to 
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  Explain why or why not, and find the corresponding Radon-Nikodym derivative, if it exists.

   (b)  Is 
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 absolutely continuous with respect to 
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  Explain why or why not, and find the corresponding Radon-Nikodym derivative, if it exists.
6.  Let 
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where 
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 denotes the entry in row 
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 and column 
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