MATH 3304 - EXAM 2 SUMMER 2015 SOLUTIONS

Thursday 2 July 2015
Instructor: Tom Cuchta

Instructions:

- Show all work, clearly and in order, if you want to get full credit. If you claim something is true you must show work backing up your claim. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers algebraically whenever possible to ensure full credit.
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point.
- Good luck!

1. (29 points) Use the method of undetermined coefficients to solve the following differential equation:

$$
y^{\prime \prime}-5 y^{\prime}-6 y=3 e^{6 t}
$$

Solution: Solve the homogeneous equation $y^{\prime \prime}-5 y^{\prime}-6 y=0$ by considering the characteristic equation $r^{2}-5 r-6=0$. It factors to $(r-6)(r+1)=0$ and so we have the homogeneous solution

$$
y_{h}(t)=c_{1} e^{-t}+c_{2} e^{6 t}
$$

The method of undetermined coefficients tells us to make the guess

$$
y_{p}(t)=t^{s}\left(A e^{6 t}\right) .
$$

Using the notation from the method of undetermined coefficients table, we have $\alpha=6$ and $\beta=0$. We ask: what is the multiplicity of $\alpha+\beta i=6$ as a root of the characteristic equation? Since the root $r=6$ appears only once, we get $s=1$. Thus our guess can be refined to

$$
y_{p}(t)=A t e^{6 t}
$$

To find A we first compute $y_{p}^{\prime}(t)=(A+6 A t) e^{6 t}$ and we compute $y_{p}^{\prime \prime}(t)=(12 A+36 A t) e^{6 t}$. Now plug these into the differential equation to get

$$
e^{6 t}[(12 A+36 A t)-5(A+6 A t)-6(A t)]=3 e^{6 t}
$$

which simplifies to $7 A=3$, or $A=\frac{3}{7}$. We have found the particular solution $y_{p}(t)=\frac{3}{7} t e^{6 t}$. Therefore the general solution of the differential equation is

$$
y(t)=y_{h}(t)+y_{p}(t)=c_{1} e^{-t}+c_{2} e^{6 t}+\frac{3}{7} t e^{6 t}
$$

2. (28 points) Find the general solution of the following differential equation:

$$
y^{\prime \prime}+y=\csc (t) ; 0<t<\pi .
$$

Solution: This problem cannot be solved using the method of undetermined coefficients, so we will use the method of variation of parameters. First we solve the homogeneous equation $y^{\prime \prime}+y=0$ which has characteristic equation $r^{2}+1=0$ which has roots $r= \pm i$. Thus the solution of the homogeneous equation is

$$
y_{h}(t)=c_{1} \cos (t)+c_{2} \sin (t) .
$$

Compute the Wronskian

$$
W\left\{y_{1}, y_{2}\right\}(t)=\operatorname{det}\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]=\cos ^{2}(t)-\left(-\sin ^{2}(t)\right)=1 .
$$

We now "guess" the particular solution to be

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)=u_{1}(t) \cos (t)+u_{2}(t) \sin (t) .
$$

Variation of parameters allows us to compute u_{1} and u_{2} as follows:

$$
u_{1}=-\int \frac{\csc (t) \sin (t)}{1} d t=-\int 1 d t=-t
$$

and

$$
u_{2}=\int \frac{\csc (t) \cos (t)}{1} d t=\int \frac{\cos (t)}{\sin (t)} d t=\log |\sin (t)| .
$$

Therefore our particular solution is

$$
y_{p}(t)=-t \cos (t)+\log (|\sin (t)|) \sin (t),
$$

and the general solution is

$$
y(t)=c_{1} \cos (t)+c_{2} \sin (t)-t \cos (t)+\log (|\sin (t)|) \sin (t) .
$$

3. (28 points) Use reduction of order to find the general solution of

$$
t^{2} y^{\prime \prime}(t)+2 t y^{\prime}(t)-2 y(t)=0
$$

given that $y_{1}(t)=t$ is a solution and $t>0$.
Solution: Reduction of order tells us to "guess" $y_{2}(t)$ to be of the form $y_{2}(t)=v(t) y_{1}(t)=v(t) t$. From this we can compute $y_{2}^{\prime}(t)=v^{\prime}(t) t+v(t)$ and $y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) t+2 v^{\prime}(t)$. Plugging these into the original equation yields

$$
t^{2}\left(v^{\prime \prime} t+2 v^{\prime}\right)+2 t\left(v^{\prime} t+v\right)-2 v t=0
$$

and upon simplification we get

$$
t v^{\prime \prime}+4 v^{\prime}=0
$$

which can be solved as a first order problem by writing $w=v^{\prime}$ to get

$$
t w^{\prime}+4 w=0
$$

This first order problem can be solved using separation of variables:

$$
\int \frac{1}{w} d w=-\int \frac{4}{t} d t
$$

yielding the solution (for some constant A),

$$
w=\frac{A}{t^{4}}
$$

We may solve for v by integration: $v^{\prime}=w$ implies $v=\int w$ and so

$$
v(t)=\int \frac{A}{t^{4}} d t=\frac{C}{t^{3}}
$$

for some constant C. We have found the solution $y_{2}(t)=v t=\frac{C}{t^{2}}$. Therefore the general solution is

$$
y(t)=c_{1} t+c_{2} \frac{1}{t^{2}}
$$

4. (28 points) Find the general solution of the following differential equations:
(a) (23 points) $y^{\prime \prime \prime}(t)+y^{\prime \prime}(t)+81 y^{\prime}(t)+81 y(t)=0$

Solution: The characteristic equation for this problem is

$$
r^{3}+r^{2}+81 r+81=0
$$

The left-hand-side factors to $\left(r^{2}+81\right)(r-1)=0$, yielding roots $r=1, \pm 9 i$. Hence the general solution is

$$
y(t)=c_{1} e^{t}+c_{2} \cos (9 t)+c_{2} \sin (9 t)
$$

(b) (5 points) $y^{\prime \prime \prime}(t)=t^{2}+1$

Solution: This problem can be solved by integration. Integrate once to get

$$
y^{\prime \prime}(t)=\frac{t^{3}}{3}+t+c_{1}
$$

integrate again to get

$$
y^{\prime}(t)=\frac{t^{4}}{12}+\frac{t^{2}}{2}+c_{1} t+c_{2}
$$

and integrate once more to get

$$
y(t)=\frac{t^{5}}{60}+\frac{t^{3}}{6}+c_{1} \frac{t^{2}}{2}+c_{2} t+c_{3}
$$

or alternatively using $\tilde{c_{1}}=2 c_{1}$

$$
y(t)=\frac{t^{5}}{60}+\frac{t^{3}}{6}+\tilde{c_{1}} t^{2}+c_{2} t+c_{3}
$$

5. (28 points) Use $g=32 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$. A spring hangs vertically from a rigid support. When a body with mass $\frac{1}{16}$ slug is attached to the spring, it stretches $\frac{1}{4} \mathrm{ft}$. The body is given a downward displacement of $\frac{1}{2} \mathrm{ft}$ and released with no initial velocity. Assume there there is no damping force and no forcing function.
(a) (25 points) Determine the position of the body at time t.

Solution: We compare the given information to the general equation for spring problems:

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F(t) .
$$

We are told that $m=\frac{1}{16}, \gamma=0$, and $F(t)=0$. We must find the value of k. We are told $u_{0}=\frac{1}{4}$ and so we arrange the equation $m g=u_{0} k$ to get

$$
k=\frac{m g}{u_{0}}=\frac{\frac{32}{16}}{\frac{1}{4}}=8 .
$$

The initial conditions are $u(0)=\frac{1}{2}$ and $u^{\prime}(0)=0$. Thus we have the initial value problem

$$
\frac{1}{16} u^{\prime \prime}+8 u=0 ; u(0)=\frac{1}{2}, u^{\prime}(0)=0 .
$$

To solve it, find the solution by solving the characteristic equation $\frac{1}{16} r^{2}+8=0$ which has solution $r= \pm \sqrt{-128}= \pm 8 \sqrt{2} i$ yielding the solution

$$
u(t)=c_{1} \cos (8 \sqrt{2} t)+c_{2} \sin (8 \sqrt{2} t)
$$

We now need to find the values of c_{1} and c_{2} from the initial conditions. Calculate

$$
u^{\prime}(t)=-8 \sqrt{2} c_{1} \cos (8 \sqrt{2} t)+8 \sqrt{2} c_{2} \sin (8 \sqrt{2} t)
$$

Thus our initial conditions are given by

$$
\left\{\begin{array}{l}
\frac{1}{2}=u(0)=c_{1} \\
0=u^{\prime}(0)=-8 \sqrt{2} c_{2}
\end{array}\right.
$$

and so we see $c_{1}=\frac{1}{2}$ and $c_{2}=0$. Therefore the solution of the initial value problem is

$$
u(t)=\frac{1}{2} \cos (8 \sqrt{2} t)
$$

(b) (3 points) At which time $t>0$ does the body in the system described above first return to its equilibrium position?
Solution: The body will return to equilibrium for the first time at the smallest value of t such that $u(t)=\frac{1}{2} \cos (8 \sqrt{2} t)=0$. This occurs whenever the argument to the cosine function is $\frac{\pi}{2}$, i.e. $8 \sqrt{2} t=\frac{\pi}{2}$. Therefore the body returns to equilibrium the first time when $t=\frac{\pi}{16 \sqrt{2}}$.

2015 Summer Semester MATH 3304 Hour Exam 2
Instructor: Tom Cuchta, Section A

Points earned (out of 140)	How many got this score?
0	1
29	1
49	2
50	1
52	1
57	2
58	1
78	1
81	1
84	1
86	1
90	1
97	1
99	1
100	2
101	1
109	2
112	1
113	1
114	1
115	2
116	1
117	2
118	1
119	1
120	1
122	1
124	1
125	1
126	1
127	1
128	1
129	2
130	1
131	2
132	3
133	1
137	2
140	3

Number taking exam: 52
Median: 115.9 points (82.7%))
Mean: 104.53 points (74.7%)
Standard deviation: points 32.52 points (23\%))
Number receiving A's $(126 \leq$ points $\leq 140)$: 17
Number receiving B's $(112 \leq$ points $<126)$: 14
Number receiving C's $(98 \leq$ points $<112): 6$
Number receiving D's ($84 \leq$ points <98): 4
Number receiving F's ($0 \leq$ points <84): 11

