MATH 3304 - EXAM 3 SUMMER 2015 SOLUTION

Friday 17 July 2015
Instructor: Tom Cuchta

Instructions:

- Show all work, clearly and in order, if you want to get full credit. If you claim something is true you must show work backing up your claim. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers algebraically whenever possible to ensure full credit.
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point.
- Good luck!

1. (28 points) Solve the following differential equation:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\delta(t-1) ; y(0)=0, y^{\prime}(0)=0
$$

Solution: Take the Laplace transform to get

$$
\left(s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)\right)+3(s \mathscr{L}\{y\}-y(0))+2 \mathscr{L}\{y\}=e^{-s} .
$$

Applying initial conditions yields

$$
\left(s^{2}+3 s+2\right) \mathscr{L}\{y\}=e^{-s}
$$

and solving for $\mathscr{L}\{y\}$ gives us

$$
\mathscr{L}\{y\}=\frac{e^{-s}}{s^{2}+3 s+2}
$$

Since

$$
\frac{1}{s^{2}+3 s+2}=\frac{1}{(s+2)(s+1)}
$$

we use partial fractions:

$$
\frac{1}{(s+2)(s+1)}=\frac{A}{s+2}+\frac{B}{s+1}
$$

hence

$$
1=(A+B) s+(A+2 B)
$$

yielding the system

$$
\left\{\begin{array}{l}
A+B=0 \\
A+2 B=1
\end{array}\right.
$$

which has solution $A=-1$ and $B=1$. Hence

$$
\mathscr{L}\{y\}=-\frac{e^{-s}}{s+2}+\frac{e^{-s}}{s+1}
$$

Take the inverse Laplace transform to get (note that the function $\theta(t-1)$ on Wolframalpha corresponds to our function $\left.u_{1}(t)\right)$

$$
\begin{aligned}
y(t) & =-\mathscr{L}^{-1}\left\{\frac{e^{-s}}{s+2}\right\}(t)+\mathscr{L}^{-1}\left\{\frac{e^{-s}}{s+1}\right\}(t) \\
& =-u_{1}(t) e^{-2 t+2}+u_{1}(t) e^{1-t}
\end{aligned}
$$

2. (28 points) Solve the following integral equation:

$$
y(t)+\int_{0}^{t} y(t-\tau) \tau d \tau=4
$$

Solution: Recognize that the integral in this equation can be written as the convolution $(y * f)(t)$ where $f(t)=t$ (hence $\mathscr{L}\{f\}=\frac{1}{s^{2}}$), so we can rewrite the integral equation as

$$
y(t)+(y * f)(t)=4
$$

Take the Laplace transform, using the convolution theorem on the second term on the left-hand-side to get

$$
\mathscr{L}\{y\}+\mathscr{L}\{y\} \mathscr{L}\{f\}=\mathscr{L}\{4\}
$$

which simplifies to

$$
\left(1+\frac{1}{s^{2}}\right) \mathscr{L}\{y\}=\frac{4}{s}
$$

Since $1+\frac{1}{s^{2}}=\frac{s^{2}+1}{s^{2}}$ we may solve for $\mathscr{L}\{y\}$ to get

$$
\mathscr{L}\{y\}=\frac{4}{s} \frac{s^{2}}{s^{2}+1}=\frac{4 s}{s^{2}+1} .
$$

Take the inverse Laplace transform to get

$$
y(t)=4 \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}=4 \cos (t) .
$$

3. (28 points) Complete the following two parts.
(a) (20 points) Solve the following differential equation:

$$
y^{\prime \prime}(t)+4 y(t)=f(t) ; y(0)=0, y^{\prime}(0)=0, f(t)= \begin{cases}0 & ; 0 \leq t<10 \\ 1 & ; t \geq 10\end{cases}
$$

Solution: We must express f using step functions: $f(t)=u_{10}(t)$. Thus the differential equation becomes

$$
y^{\prime \prime}(t)+4 y(t)=u_{10}(t)
$$

Note that $\mathscr{L}\{f\}=\frac{e^{-10 s}}{s}$. Take the Laplace transform of the ODE to get

$$
\left(s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)\right)+4 \mathscr{L}\{y\}=\frac{e^{-10 s}}{s}
$$

Apply the initial conditions to this equation to get

$$
\left(s^{2}+4\right) \mathscr{L}\{y\}=\frac{e^{-10 s}}{s}
$$

Solving for $\mathscr{L}\{y\}$ yields

$$
\mathscr{L}\{y\}=\frac{e^{-10 s}}{s\left(s^{2}+4\right)}
$$

We will use partial fractions to simplify $\frac{1}{s\left(s^{2}+4\right)}$:

$$
\frac{1}{s\left(s^{2}+4\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+4}
$$

so

$$
1=(A+B) s^{2}+C s+4 A
$$

This yields the system

$$
\left\{\begin{array}{l}
A+B=0 \\
C=0 \\
4 A=1
\end{array}\right.
$$

which has solution $A=\frac{1}{4}, B=-\frac{1}{4}, C=0$. Hence

$$
\mathscr{L}\{y\}=\frac{1}{4} \frac{1}{s}-\frac{1}{4} \frac{s}{s^{2}+4} .
$$

Taking the inverse Laplace transform yields

$$
y(t)=\frac{1}{4} \mathscr{L}^{-1}\left\{\frac{e^{-10 s}}{s}\right\}-\frac{1}{4} \mathscr{L}^{-1}\left\{\frac{s e^{-10 s}}{s^{2}+4}\right\}=\frac{1}{4} u_{10}(t)-\frac{1}{4} u_{10}(t) \cos (2(t-10)) .
$$

note: Wolfram's alpha solution of $\frac{1}{2} u_{10}(t) \sin ^{2}(10-t)$ is equivalent to our solution (look under "alternate forms").
(b) (8 points) Use the solution $y(t)$ you found above to compute the value of $y(2)$ and the value of $y(11)$.
Solution: Compute

$$
y(2)=\frac{1}{4} u_{10}(2)-\frac{1}{4} u_{10}(2) \cos (2(2-10))=0
$$

because of the definition of $u_{10}(t)$. Compute

$$
\begin{aligned}
y(11) & =\frac{1}{4} u_{10}(11)-\frac{1}{4} u_{10}(11) \cos (2(11-10)) \\
& =\frac{1}{4}-\frac{1}{4} \cos (2)
\end{aligned}
$$

4. (28 points) Consider two tanks filled with a solution of water and salt. Assume throughout that the solution is well-mixed. Tank 1 initially contains 10 gallons of water and 12 oz of salt, and Tank 2 initially contains 5 gallons of water and 4 oz of salt. Water containing $3 \frac{\mathrm{oz}}{\text { gal }}$ of salt flows into Tank 1 at a rate of $2 \frac{\mathrm{gal}}{\mathrm{min}}$. The mixture flows from Tank 1 to Tank 2 at a rate of $3 \frac{\mathrm{gal}}{\mathrm{min}}$. Water containing $4 \frac{\mathrm{oz}}{\mathrm{gal}}$ of salt also flows into Tank 2 at a rate of $1.5 \frac{\mathrm{gal}}{\mathrm{min}}$ (from the outside). The mixture drains from Tank 2 at a rate of $4.5 \frac{\mathrm{gal}}{\mathrm{min}}$, of which some flows into Tank 1 at a rate of $1 \frac{\mathrm{gal}}{\mathrm{min}}$, while the remainder leaves the system.
Set up but do not solve a system of differential equations that models the amount of salt in each tank at time t.

Solution: Let $Q_{1}(t)$ be the amount of salt in Tank 1 and $Q_{2}(t)$ be the amount of salt in Tank 2 . Thus we have

$$
\left\{\begin{array}{l}
Q_{1}^{\prime}(t)=\left(2 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(3 \frac{\mathrm{oz}}{\mathrm{gal}}\right)+\left(\frac{Q_{2}(t)}{5} \frac{\mathrm{oz}}{\mathrm{gal}}\right)\left(1 \frac{\mathrm{gal}}{\mathrm{~min}}\right)-\left(3 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{Q_{1}(t)}{10} \frac{\mathrm{oz}}{\mathrm{gal}}\right) \\
Q_{2}^{\prime}(t)=\left(1.5 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(4 \frac{\mathrm{oz}}{\mathrm{gal}}\right)+\left(\frac{3 \mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{Q_{1}(t)}{10} \frac{\mathrm{oz}}{\mathrm{gal}}\right)-\left(\frac{4.5 \mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{Q_{2}(t)}{5} \frac{\mathrm{oz}}{\mathrm{gal}}\right)
\end{array}\right.
$$

or simplified

$$
\left\{\begin{array}{l}
Q_{1}^{\prime}(t)=-\frac{3}{10} Q_{1}(t)+\frac{1}{5} Q_{2}(t)+6 ; Q_{1}(0)=10 \\
Q_{2}^{\prime}(t)=\frac{3}{10} Q_{1}(t)-\frac{4.5}{5} Q_{2}(t)+6 ; Q_{2}(0)=5
\end{array}\right.
$$

5. (28 points) Solve the following system of two equations by transforming it into a second order differential equation:

$$
\begin{cases}y_{1}^{\prime}(t)=-2 y_{1}(t)+y_{2}(t) & ; y_{1}(0)=1 \\ y_{2}^{\prime}(t)=4 y_{1}(t)+y_{2}(t) & ; y_{2}(0)=1\end{cases}
$$

Solution: By the first equation in the system,

$$
y_{2}=y_{1}^{\prime}+2 y_{1}
$$

and we may compute

$$
y_{2}^{\prime}=y_{1}^{\prime \prime}+2 y_{1}^{\prime} .
$$

Plug these formulas into the second equation of the system to get

$$
y_{1}^{\prime \prime}+2 y_{1}^{\prime}=4 y_{1}+y_{1}^{\prime}+2 y_{1}
$$

and simplify to get

$$
y_{1}^{\prime \prime}+y_{1}^{\prime}-6 y_{1}=0
$$

This is a 2 nd order ODE with constant coefficients - we solve it by looking at the characteristic equation

$$
r^{2}+r-6=0
$$

which factors to

$$
(r+3)(r-2)=0
$$

Thus we see

$$
y_{1}(t)=c_{1} e^{-3 t}+c_{2} e^{2 t} .
$$

Applying the initial condition to this yields

$$
(*) \quad 1=y(0)=c_{1}+c_{2} .
$$

Differentiate the formula for y_{1} to get

$$
y_{1}^{\prime}(t)=-3 c_{1} e^{-3 t}+2 c_{2} e^{2 t}
$$

Now back substitute our formulas for y_{1} and y_{1}^{\prime} into the formula defining y_{2} to see

$$
\begin{aligned}
y_{2} & =\left(-3 c_{1} e^{-3 t}+2 c_{2} e^{2 t}\right)+2\left(c_{1} e^{-3 t}+c_{2} e^{2 t}\right) \\
& =-c_{1} e^{-3 t}+4 c_{2} e^{2 t}
\end{aligned}
$$

Now apply the initial condition for y_{2} to get

$$
(* *) \quad 1=y_{2}(0)=-c_{1}+4 c_{1} .
$$

Equations $(*)$ and $(* *)$ yield the following system of equations to determine c_{1} and c_{2} :

$$
\begin{cases}c_{1}+c_{2} & =1 \\ -c_{1}+4 c_{2} & =1\end{cases}
$$

This system has solution $c_{1}=\frac{3}{5}$ and $c_{2}+\frac{2}{5}$. Therefore we have shown that the solution of the system of equations is

$$
\left\{\begin{array}{l}
y_{1}(t)=\frac{3}{5} e^{-3 t}+\frac{2}{5} e^{2 t} \\
y_{2}(t)=-\frac{3}{5} e^{-3 t}+\frac{8}{5} e^{2 t}
\end{array}\right.
$$

Table of Laplace Transforms

$f(t)=\mathscr{L}^{-1}\{F(s)\}$	$F(s)=\mathscr{L}\{f(t)\}$
$e^{a t}$	$\frac{1}{s-a}$
t^{n}	$\frac{n!}{s^{n+1}}$
$\sin (b t)$	$\frac{b}{s^{2}+b^{2}}$
$\cos (b t)$	$\frac{s}{s^{2}+b^{2}}$
$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$
$u_{c}(t) f(t)$	$e^{-c s} \mathscr{L}\{f(t+c)\}(s)$
$e^{c t} f(t)$	$F(s-c)$
$(f * g)(t)$	$F(s) G(s)$
$\delta(t-c)$	$e^{-c s}$
$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\ldots-f^{(n-1)}(0)$

2015 Summer Semester MATH 3304 Hour Exam 2
Instructor: Tom Cuchta, Section A

Points earned (out of 140)	How many got this score?
41	1
47	1
65	1
68	1
70	1
75	1
84	1
91	2
92	1
94	1
95	1
97	1
98	2
99	1
100	1
103	1
104	1
106	1
108	2
112	2
113	2
118	2
120	2
121	2
122	1
123	1
125	1
126	1
128	1
129	3
130	1
131	1
132	1
133	2
135	1
140	3

Number taking exam: 49
Median: 113 points (80.71%))
Mean: 108.71 points (77.65%)
Standard deviation: 23.61 points (1.6\%))
Number receiving A's ($126 \leq$ points ≤ 140): 14
Number receiving B's ($112 \leq$ points <126): 13
Number receiving C's ($98 \leq$ points <112): 9
Number receiving D's ($84 \leq$ points <98): 7
Number receiving F's $(0 \leq$ points $<84): 6$

